This Author published in this journals
All Journal JURTEKSI
Johanes Terang Kita Perangin - Angin
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

EVALUATION OF HYBRID MOVIE RECOMMENDATION SYSTEM BASED ON NEURAL NETWORKS Widjaja, William; Robert; Johanes Terang Kita Perangin - Angin
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.4079

Abstract

Abstract: Recommendation systems are becoming increasingly important with the growth of streaming platforms. The purpose of this study is to compare the performance of Content-Based Filtering, Neural Collaborative Filtering, and a combination of both in a movie recommendation system. The method used in this study involves retrieving movie details from the TMDB API and ratings from the MovieLens 32M Dataset (2010-2023). Each model's performance is evaluated using evaluation metrics such as RMSE and MAE. The results of this study indicate that Neural Collaborative Filtering achieves the best prediction performance (RMSE = 0.785423, MAE = 0.581262), followed by the hybrid model (RMSE = 0.800863, MAE = 0.660872), while Content-Based Filtering produces low performance and limits the capabilities of the hybrid model. In conclusion, these findings highlight the superiority of latent feature-based models such as NCF that learn directly from user interaction patterns over content-based approaches in the context of modern recommendation systems. Keywords: content-based filtering; hybrid filtering; movie recommendation; neural collaborative filtering. Abstrak: Sistem rekomendasi menjadi semakin penting seiring berkembangnya platform streaming. Tujuan dari penelitian ini adalah membandingkan kinerja Content-Based Filtering, Neural Collaborative Filtering dan kombinasi keduanya dalam sistem rekomendasi film. Metode yang digunakan dalam penelitian ini melibatkan pengambilan detail film dari TMDB API dan rating dari dataset MovieLens 32M Dataset (2010-2023). Setiap peforma model dievaluasi dengan menggunakan metrik evaluasi seperti RMSE dan MAE. Hasil dari penelitian ini menunjukkan bahwa Neural Collaborative Filtering mencapai kinerja prediksi terbaik (RMSE = 0.785423, MAE = 0.581262), diikuti oleh model hybrid (RMSE = 0.800863, MAE = 0.660872), sementara Content-Based Filtering menghasilkankan peforma yang rendah dan membatasi kemampuan model hybrid. Kesimpulannya, penelitian ini menyoroti superiotas model berbasis latent feature seperti NCF yang belajar langsung dari pola interaksi pengguna dibandingkan pendekatan berbasis konten dalam konteks sistem rekomendasi modern. Kata kunci: content-based filtering; hybrid filtering; neural collaborative filtering; rekomendasi film.