Pamungkas, Azriel Sebastian
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Pengaruh SMOTE terhadap Kinerja Model KNN untuk Prediksi Risiko Stroke Paramita, Cinantya; Simbolon, Calvin Samuel; Pamungkas, Azriel Sebastian; Triono, Justin Matthew; Widi Utomo, Emanuel Pinesthi; Subhiyakto, Egia Rosi
Jurnal Informatika: Jurnal Pengembangan IT Vol 10, No 4 (2025)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v10i4.8809

Abstract

Penelitian ini membahas masalah ketidakseimbangan data dalam klasifikasi risiko stroke, di mana kasus non-stroke secara signifikan lebih rendah daripada kasus stroke. Ketidakseimbangan kelas cenderung menimbulkan bias terhadap kelas mayoritas, yang menyebabkan berkurangnya efektivitas klasifikasi. Untuk mengatasi hal ini, SMOTE (Synthetic Minority Over-sampling Technique) digunakan untuk mengatasi ketidakseimbangan kelas dalam dataset dan algoritma K-Nearest Neighbor (KNN) digunakan untuk klasifikasi. Dataset mengalami preprocessing, aplikasi SMOTE, dan algoritma KNN dilatih dan dievaluasi menggunakan metrik standar termasuk akurasi, presisi, recall, dan F1-score. Penerapan SMOTE bersama dengan KNN menghasilkan peningkatan yang signifikan dalam hasil klasifikasi, mencapai akurasi 91,87%, presisi 94,27%, recall 89,20%, dan F1-score 91,66%. Temuan ini menegaskan bahwa pendekatan yang diimplementasikan berkinerja baik dalam mendeteksi risiko stroke meskipun ada set data yang tidak seimbang. Tujuan dari penelitian ini adalah untuk menginformasikan kemajuan teknologi deteksi dini stroke yang lebih kuat dan mendukung peningkatan dalam penyediaan layanan kesehatan.