Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimization of two-stage DTMOS operational transconductance amplifier with Firefly algorithm Chary, Udari Gnaneshwara; Mummadi, Swathi; Kishore, Kakarla Hari
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1417-1428

Abstract

This paper presents a methodology for optimizing dynamic threshold MOSFET (DTMOS) two-stage operational transconductance amplifiers (OTAs) tailored for biomedical applications through the utilization of the Firefly algorithm. The optimization process focuses on enhancing key performance metrics such as gain, bandwidth, and power efficiency, which are critical for biomedical signal processing, neural interfaces, and wearable healthcare devices. The methodology encompasses circuit architecture definition, Firefly algorithm implementation, fitness evaluation, and result analysis. The optimization results reveal a significant enhancement in performance metrics. Specifically, the number of transistors in the design is 25. The initial overall gain was 76.65 V/V, with a power efficiency (µ) of 1.6. After optimization, the overall gain was significantly improved to 84.029 dB using the Firefly algorithm, demonstrating superior performance compared to existing algorithms. The power efficiency (µ) was also enhanced to 1.702, underscoring the efficiency improvements achieved through optimization. Simulation results and statistical analysis confirm that the Firefly algorithm effectively achieves optimal configurations, improving the robustness of OTA designs against parameter variations. These enhancements validate the algorithm's efficacy in addressing power-performance trade-offs and its suitability for diverse biomedical applications. Physical prototyping of the optimized design further demonstrates real-world functionality, underscoring its practical applicability.