Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Tingkat Penjualan Produk pada Toko Jati Karebet Menggunakan Algoritma Naïve Bayes Setiawan, Revi; Priyatna, Bayu; Novalia, Elfina; Huda, Baenil
JURNAL FASILKOM Vol. 15 No. 2 (2025): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v15i2.9614

Abstract

Penelitian ini bertujuan menerapkan algoritma Naive Bayes untuk mengklasifikasikan tingkat penjualan produk di Toko Jati Karebet selama tahun 2024. Latar belakang penelitian ini adalah belum optimalnya pemanfaatan strategi penjualan berbasis data dalam menentukan prioritas stok dan promosi, yang sering menyebabkan inefisiensi persediaan pada Usaha Mikro, Kecil, dan Menengah (UMKM). Data penjualan historis dianalisis menggunakan pendekatan data mining untuk mengenali pola penjualan dan membangun model prediksi. Tahap awal meliputi preprocessing data, seleksi pesanan yang berstatus selesai, agregasi penjualan per produk, dan pelabelan kategori kelarisan menjadi tiga kelas: laris (>100 unit), kurang laris (20–100 unit), dan tidak laris (<20 unit). Model Gaussian Naive Bayes dilatih dan diuji dengan metode supervised learning menggunakan pembagian data 70% untuk pelatihan dan 30% untuk pengujian. Evaluasi model dilakukan dengan confusion matrix dan metrik klasifikasi. Hasil pengujian menunjukkan akurasi sebesar 76%, dengan precision 0,79, recall 0,98, dan F1-score 0,87 pada kategori laris. Temuan ini membuktikan bahwa Naive Bayes mampu memberikan hasil prediksi yang cukup andal untuk kategori mayoritas, namun kinerjanya menurun pada kategori minoritas akibat ketidakseimbangan distribusi data. Penelitian ini menyimpulkan bahwa algoritma Naive Bayes dapat digunakan sebagai alat bantu pengambilan keputusan dalam manajemen stok dan strategi penjualan UMKM, serta merekomendasikan penerapan teknik penyeimbangan data atau eksplorasi algoritma lain pada penelitian berikutnya untuk meningkatkan performa di semua kategori