Claim Missing Document
Check
Articles

Found 4 Documents
Search

Penerapan Metode Topsis Sistem Penunjang Keputusan Pada Kelayakan Pemberian Pinjaman Nasabah Gunawan, Gunawan; Milkhatunisya, Milkhatunisya; Surorejo, Sarif; Ananda, Pingky Septiana
Jurnal Ekonomi Teknologi dan Bisnis (JETBIS) Vol. 1 No. 1 (2022): Jurnal Ekonomi, Teknologi dan Bisnis
Publisher : Al-Makki Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57185/jetbis.v1i1.1

Abstract

Kelayakan pemberian kredit dalam pengambilan keputusan membutuhkan waktu yang lama, sering kali kredit macet terjadi karena pengambilan keputusan kredit-kredit yang tidak tepat disebabkan karena pinjaman bermasalah atau salah sasaran calon nasabah dengan petugas Koperasi Bangun Jaya Sejahtera dalam memberikan kredit, Pimpinan sering mengalami kesulitan dalam mengambil keputusan, dalam mengajukan permohonan kredit untuk memutuskan menerima atau menolaknya memerlukan pertimbangan yang harus dianalisis dan dipikirkan. Keputusan dalam memberikan kredit kepada calon nasabah harus mengarah pada aturan-aturan yang ditetapkan oleh instansi. Selain itu, pinjaman terbesar membutuhkan sistem pendukung keputusan atau SPKyang akan saya bahas di jurnal ini dengan menggunakan tekbin TOPSIS. pemberian kredit pada Koperasi ARTHA PRIMA.
Customer segmentation in sales transaction data using k-means clustering algorithm Nugroho, Bangkit Indarmawan; Rafhina, Ana; Ananda, Pingky Septiana; Gunawan, Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 2 (2024): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i2.236

Abstract

Customer segmentation against sales transaction data using K-Means clustering algorithm. The purpose of this research is to develop and validate a customer segmentation model using an optimized K-Means clustering algorithm to enable more accurate customer grouping based on sales transaction data. The methodology used includes quantitative design combined with experimental techniques, quantitative data analysis, and model validation, where rice sales transaction data from Tegal city traditional market is processed to identify customer segments. The results showed the effectiveness of the optimized K-Means algorithm in grouping customers into three clusters based on purchase characteristics, and C4-SUPER rice proved to be the best-selling among consumers. These insights enable the development of more targeted and personalized marketing strategies, enrich the academic literature on customer data analysis, and move towards the practical application of more effective customer segmentation through the use of advanced analytical technologies
Application of artificial neural network method for early detection of dengue fever Surorejo, Sarif; Ningrum, Isna Lidia; Ananda, Pingky Septiana; Gunawan, Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 2 (2024): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i2.240

Abstract

Dengue fever is a tropical disease whose diagnosis is often delayed due to limitations of conventional diagnostic methodologies, which have an impact on the effectiveness of medical interventions. This research is designed to develop an Artificial Neural Network (ANN) model aimed at improving accuracy and speed in dengue diagnosis. Through quantitative methods, clinical data from 50 patients during the period 2020-2021 were analyzed using machine learning techniques to train the ANN model, including the process of data normalization and selection of relevant features. The test results of the model showed excellent diagnostic performance with accuracy reaching 87%, precision 92%, and F1-Score 92%, indicating its effective ability to identify positive and negative cases. The conclusion of this study is that the developed ANN model is able to overcome the limitations of conventional diagnostics and shows significant potential in improving medical responses to dengue outbreaks. Further research is recommended to expand the datasets used in order to improve the validation and generalization of the model in the context of broader clinical applications
Comparison of naïve bayes and KNN for herbal leaf classification Nugroho, Bangkit Indarmawan; Khusni, Muhammad Wazid; Ananda, Pingky Septiana; Gunawan, Gunawan
Jurnal Mandiri IT Vol. 13 No. 1 (2024): July: Computer Science and Field
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/mandiri.v13i1.297

Abstract

This study aims to compare the effectiveness of two classification algorithms, namely Naïve Bayes Classifier and K-Nearest Neighbor (KNN), in classifying herbal leaves. This research design uses a quantitative approach with experimental analysis and model validation. The dataset consisted of images of papaya leaves, pandanus, cat's whiskers, and betel nut taken in different lighting conditions. The methodology includes pre-processing of data by converting images into grayscale, feature extraction using Gray Level Co-occurrence Matrix (GLCM), and application of Naïve Bayes and KNN algorithms. The main results showed that KNN achieved 90.00% accuracy with precision, recall, and F1-score of 88.33% respectively, higher than Naïve Bayes which had 82.50% accuracy, 81.46% precision, 85.83% recall, and 82.27% F1-score. In conclusion, KNN is superior in the classification of herbal leaves to Naïve Bayes, although it requires a longer computational time. Further research is recommended to optimize algorithm parameters and explore the integration of deep learning techniques to improve classification accuracy and efficiency.