Riswanda, Mohammad Nizar
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Prediksi Laju Inflasi di Jawa Timur Menggunakan Model N-BEATS dan Optimasi Optuna: Prediction of Inflation Rate in East Java Using the N-BEATS Model and Optuna Optimization Riswanda, Mohammad Nizar; Trimono, Trimono; Saputra, Wahyu Syaifullah Jauharis
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2141

Abstract

Inflasi merupakan indikator penting yang memengaruhi kestabilan dan pertumbuhan ekonomi suatu wilayah. Prediksi inflasi yang akurat sangat dibutuhkan guna mendukung perumusan kebijakan ekonomi yang tepat. Penelitian ini mengusulkan penggunaan model N-BEATS (Neural Basis Expansion Analysis for Time Series) yang dioptimalkan dengan Optuna untuk memprediksi inflasi di Provinsi Jawa Timur. Data yang digunakan berupa deret waktu univariat, yaitu laju inflasi bulanan dari Januari 2005 hingga Desember 2024, yang diperoleh dari Badan Pusat Statistik (BPS). Evaluasi performa model dilakukan menggunakan metrik Mean Absolute Percentage Error (MAPE). Berbeda dengan model tradisional seperti ARIMA dan LSTM, N-BEATS mengandalkan jaringan saraf feedforward dengan arsitektur blok residual yang mampu melakukan rekonstruksi masa lalu (backcast) dan prediksi masa depan (forecast). Optimasi hyperparameter melalui Optuna berhasil meningkatkan akurasi model secara signifikan. Hasil Penelitian menunjukkan bahwa N-BEATS teroptimasi mencapai MAPE sebesar 8,97%, lebih baik dibandingkan N-BEATS dasar (11,05%), ARIMA (16,95%), dan LSTM (12,23%). Temuan ini mengindikasikan bahwa pendekatan N-BEATS dengan Optuna efektif dalam meningkatkan akurasi prediksi inflasi dan dapat menjadi alat bantu penting bagi perencanaan ekonomi di tingkat daerah.