p-Index From 2020 - 2025
0.408
P-Index
This Author published in this journals
All Journal Jurnal Teknokes
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Monitoring SpO2, BPM, and Temperature on Smartband with Data Sending Using IoT Android Display Mahardika, Melva; Irianto, Bambang Guruh; Wisana, I Dewa Gede Hari; Triwiyanto, Triwiyanto; Rathod, Yagnik
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

No matter if a patient is receiving care at home or in a hospital, monitoring them is an essential part of healthcare.Currently, many hospitals use a manual method to measure body temperature, oxygen saturation, and heart rate, necessitating physical visits from nurses to patients' rooms to get data. This approach, however, turns out to be less effective and time-consuming. This research aims to develop a wearable device placed on a patient's wrist is the main goal of this project. Body temperature, oxygen saturation, and heart rate are the three vital sign metrics that this gadget will be able to continuouslymonitor in real-time. Additionally, Ubidots integration will enable the device to deliver notifications based on the data gathered.The contribution of this research is the development of IoT-based wearable devices for remote monitoring, which aims to improve the quality of health service monitoring. The tool is expected to facilitate remote monitoring for medical personnel and patient families. This research method uses MAX30100 as digital sensors to monitor heart rate, oxygen saturation and MLX90614 as a sensor to detect body temperature. The results of this research can display data on the Ubidots application and send notifications to email. The results showed that the SpO2 sensor had the lowest error rate of 0.2% and the highest mistake rate of 1.6%. The error rates displayed by the BPM sensor varied, with the lowest being 0.6% and the largest being 5.68%. For body temperature measurements, the minimum error rate recorded is 0.002%, while the maximum error rate is 0.016%. This research shows that it is time to develop further into a sophisticated health monitoring tool to improve the quality of health services.
IoT-Based Human Vital Sign Monitoring Tool Using Telegram Notifications Dwi K, Rizky; Assalim Tetra Putra, Moch. Prastawa; Kholiq, Abdul; Utomo, Bedjo; sumber, sumber; Triwiyanto, Triwiyanto; Rathod, Yagnik
Jurnal Teknokes Vol. 16 No. 3 (2023): September
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Vital signs play a crucial role in monitoring the progress of adult or pediatric patients during hospitalization, as they enable prompt detection of delayed recovery or adverse events. Vital signs are measured to obtain fundamental indicators of the patient's health status. The measurement of vital signs, including blood pressure, temperature, pulse, and respiratory rate, is the most common intervention in hospital medicine. Advanced monitoring systems combine clinical and technological aspects to deliver innovative healthcare outcomes. Remote patient monitoring systems are increasingly becoming the cornerstone of healthcare delivery, replacing traditional manual recording with computer and smartphonebased electronic recording as a versatile and innovative health monitoring system. This study aims to design a Vital Sign Monitoring Parameter BPM and RR tool with Notifications via the IoT-Based Telegram application. The tool enables the monitoring of vital signs, particularly BPM and RR, regardless of the patient's location and at any given time. This allows doctors, health workers, and patients to stay informed about their health condition. Real-time display of vital sign data is available through the TFT LCD screen, and the data from the screen can be accessed via Telegram. The Telegram application will send notifications in the event of abnormal patient conditions. MAX30100, a digital sensor for detecting breathing rate and heart rate, is utilized in this research. Furthermore, the data obtained shows errors that are within the allowable limits for each parameter. The difference between the heart rate readings and the respiratory rate values on the device and the patient monitor is 1.14% for heart rate and 0.84% for respiratory rate. This study indicates that it is time to monitor vital signs that can be seen remotely and have a system that is an inexpensive and easy-to-operate device for health workers without interfering with activities of daily living.