Claim Missing Document
Check
Articles

Found 32 Documents
Search

Embedded system for upper-limb exoskeleton based on electromyography control Triwiyanto Triwiyanto; I Putu Alit Pawana; Bambang Guruh Irianto; Tri Bowo Indrato; I Dewa Gede Hari Wisana
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.11670

Abstract

A major problem in an exoskeleton based on electromyography (EMG) control with pattern recognition-based is the need for more time to train and to calibrate the system in order able to adapt for different subjects and variable. Unfortunately, the implementation of the joint prediction on an embedded system for the exoskeleton based on the EMG control with non-pattern recognition-based is very rare. Therefore, this study presents an implementation of elbow-joint angle prediction on an embedded system to control an upper limb exoskeleton based on the EMG signal. The architecture of the system consisted of a bio-amplifier, an embedded ARMSTM32F429 microcontroller, and an exoskeleton unit driven by a servo motor. The elbow joint angle was predicted based on the EMG signal that is generated from biceps. The predicted angle was obtained by extracting the EMG signal using a zero-crossing feature and filtering the EMG feature using a Butterworth low pass filter. This study found that the range of root mean square error and correlation coefficients are 8°-16° and 0.94-0.99, respectively which suggest that the predicted angle is close to the desired angle and there is a high relationship between the predicted angle and the desired angle.
A low-cost electro-cardiograph machine equipped with sensitivity and paper speed option Bambang Guruh Irianto; Budhiaji Budhiaji; Dwi Herry Andayani
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 3: June 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i3.8558

Abstract

The price of electrocardiograph (ECG) machine on the market is very high. Currently, the technology used is still very complicated and ineffective, and the ECG machine cannot be connected to other devices. A new development of a low-cost ECG machine with a customized design was needed to integrate the machine with other devices. Therefore, the purpose of this study is to develop a low-cost ECG machine which can be connected to other devices and equipped with sensitivity and paper speed setting. So that portable ECG machines can be produced and used at small clinics in the society. In this study, the main controller of the 12 channels ECG machines was supported by ATMEGA16 microcontroller, that is available on the market at low prices. The main part of the ECG amplifier is built using a high common mode rejection ratio (CMRR) instrumentation amplifier (AD620) and a bandpass filter which the cutoff frequency for highpass filter and lowpass filter are 0.05 Hz and 100 Hz, respectively. In order to complement the previous study, some features were introduced such as selectivity and motor speed option. In this study, 10 participants are involved for data acquisition,and an ECG phantom was used to calibrate the machine. The performance of the ECG machine was evaluated using standard measurement namely relative percentage error (% error) and uncertainty (UA). The result shows that %error from all of the feature is less than 2% and the UA is 0.0 which shows that the ECG machine is feasible for diagnostic purposes.
DC SHOCK SIMULATOR Muhammad Amir Maruf; Bambang Guruh Irianto; Tri Bowo Indrato
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 2 (2019): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v1i2.4

Abstract

Defibrillators are electronic devices that carry shock electrical signals (pulses) to the heart muscle to maintain myocardial depolarization that is undergoing cardiac fibrillation (ventricular fibrillation or atrial fibrillation) (Bronzino, 2000). There are several conditions that must be met for the occurrence of shock processes including shock time, energy to be provided, patient and operator safety. In this defibrillator the use of selectors / energy selection is linear in the range 1-30 Joules with the use of tools at 10, 15, 20, 25, 30 Joules. The energy will then be discarded or given to the patient via a paddle when pressed the Discharge / shock button. The result of the signal given to the patient is monophasic. This study used a pre-experimental type with a One Group post test design research design. Measurements were made 5 times the volt meter at the test points determined by the compiler.
Handheld Electrocardiogram Design Fathul Huda; Bambang Guruh irianto; Moch. Prastawa A. T. P
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.3

Abstract

Monitoring of ECG signals is very important to help diagnose the situation of a person, especially monitoring body conditions that can be done alone and comfort in patients. To provide comfort and convenience to patients, a portable ECG device with a tapping directly on the finger is needed. The purpose of this study is to monitor the electrocardiogram signal and the BPM value can be done personally by using two leads equipped with a display on the TFT LCD. The contribution of this research is ECG tapping which can be done using the 2 electrode tapping method. So that monitoring of heart conditions can be done easily, providing comfort, does not interfere with movement, and is done alone, this study was designed in a portable manner and uses a tapping of 2 electrodes attached to the finger. Heart signals are obtained from tapping using a series of instrumentation using 2 leads. Furthermore, the signal obtained is filtered and processed to be displayed on a TFT LCD. At the time of data collection, the signal and BPM values are not stable. The results of this study indicate the signal and BPM values are less stable due to the use of filters that have not been right. In this study, ECG monitoring can be implemented easily and can be done alone.
Central Monitor Based on Personal Computer Design with SpO2 and Body Temperature Parameters Using Wireless Xbee Pro I KOMANG YOGI MAHARDIKA; Bambang Guruh Irianto; Torib Hamzah; Shubhrojit Misra
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i1.6

Abstract

Central patient monitor that is not real-time and continues will cause inaccuracies monitoring results and also sending data that is still using cable will cause limited distance. The purpose of this research is to design a central monitoring based personal computer via Xbee Pro. The contribution of this research is, the system works in real-time and continues, more parameters, using wireless, longer transmission distances. So that monitoring can be done in real-time and continue via wireless with more distance, then the wireless system uses the Xbee Pro module which has larger output power and uses the same number of wireless modules between transmitter and receiver. Body temperature was measured using the LM35 sensor and oxygen saturation in the blood was measured using the MAX30100 sensor. Data is sent using Xbee Pro and displayed on a personal computer. At the distance of receiving data approximately 25 meters with a wall divider, obtained results of smooth monitoring without any loss of data. The results showed that the average SpO2 error value was 0.34% in module 1 and 0.68% in module 2. The average value of body temperature error was 0.46% in module 1 and 0.72% in module 2. The results of this research can be implemented in a centralized patient monitoring system at the hospital, making it easier for health workers to monitor multiple patients, with the results of monitoring in real-time and continue, more parameters, via wireless with greater distance.
A Coagulation Mode on Bipolar Electrosurgery Unit Using 350 KHz Frequency and Power Selection Prastawa Asalim Tetra Putra; Bambang Guruh Irianto; Tribowo Indrato; Lamidi Lamidi; Rizki Andriyanto; Nora Bouzeghaia
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.2

Abstract

Losing a lot of blood during surgery using a conventional scalpel is something that is highly avoided. The purpose of this study is to replace the conventional scalpel with a tool that utilizes a high frequency whose duty cycle is regulated and then centered at one point. Researchers take advantage of the effect of heat generated by high frequencies which are centered at one point so that it can be used for the process of surgery and coagulation in body tissues so as to minimize the occurrence of a lot of blood loss. Researchers use a high frequency of 350 KHz which is set with a duty cycle of 6% on 94% off and is equipped with 3 levels of power selection and uses forceps as a medium to concentrate high frequencies at one point. The module design consists of a 350 KHz frequency generator, a pulse control circuit to adjust the duty cycle, a power control circuit as a power setting, a driver circuit to combine the frequency with the set power so that different outputs are obtained according to the settings, and an inverter circuit to increase the voltage. In this study, after measuring using an oscilloscope in the driver circuit, the average output amplitude at each low, medium, and high setting was 27.25 Vpp, 28 Vpp, and 28.625 Vpp. The results showed that the bipolar electrosurgery unit (coagulation) module as a whole can replace conventional scalpels so that it can minimize the occurrence of a lot of blood loss during surgery. However, the frequency generator and power selection need to be improved.
Analysis of the Drop Sensors Accuracy in Central Peristaltic Infusion Monitoring Displayed on PC Based Wireless (TCRT5000 Drop Sensor) Hanna Firdaus; Bambang Guruh Irianto; Sumber; Jing Lu
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 1 (2022): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i1.5

Abstract

In some hospitals the infusion is still done manually, medical staff observes fluid drip directly and then controls its rate using a mechanical resistor (clamp), this method is certainly far from the level of accuracy. Infusion pump is a medical aid that has functions to control and ensure the correct dose of infusion fluid that is given to patients under treatment. The purpose of this study is to analyze the accuracy of the TCRT5000 as a drop sensor, based on readings of the infusion pump monitoring system. This module consists of a TCRT5000 drop sensor module, comparator circuit, monostable circuit, stepper motor, L298N motor driver, and ATmega328 microcontroller. The droplets are detected by the TCRT 5000 sensor, then amplified by a comparator and monostable circuit, then the flow rate and remaining volume readings are generated by the ATmega328 microcontroller. Furthermore, this data is sent to the Personal Computer (PC) via wireless HC-11. The results of the flow rate module measurement show that the highest error value is 4% at the 30 ml/hour setting, and the lowest error value is 1% at the 60 ml/hour setting. While the results of the flow rate measurement using an Infuse Device Analyzer, the highest error value is 2,2% at the 30 ml/hour setting, and the lowest error value is 0,58% at the 100 ml/hour setting. This infusion pump monitoring is designed centrally to facilitate the nurse's task in monitoring the infusion dose accurately that is given to the patient.
Digital Pressure Meter Tensimeter Dan Suction Pump Mukhamad Ryan Nur Rokhman; Bambang Guruh Irianto; Her Gumiwang Ariswati
Jurnal Teknokes Vol 12 No 1 (2019): April
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.171 KB)

Abstract

Kalibrasi merupakan suatu kegiatan teknis yang terdiri atas penetapan, penentuan satu atau lebih sifat dan karakteristik dari suatu produk, proses atau jasa sesuai dengan prosedur khusus yang telah ditetapkan. Tujuan kalibrasi yaitu untuk menjamin hasil pengukuran sesuai dengan standar nasional maupun internasional. Digital pressure meter (DPM) Tensimeter dan Suction Pump merupakan alat kalibrasi yang digunakan untuk menentukan tekanan positif maupun negatif (vacum). Memiliki titik resolusi naik turun 0,25 mmHg. Display yang digunakan pada modul ini adalah LCD 4x20 dimana pemograman keseluruhan menggunakan arduino ATmega328. Setelah melalui proses pembandingan dengan alat Pressure Calibrator di BPFK yang terkalibrasi di dapat nilai kesalahan dan error cukup rendah untuk nilai kesalahan pada tekanan positif bernilai kurang dari 0,83 mmHg, dan kurang dari 0,67 untuk tekanan negatif. Memiliki hasil rata-rata error sebesar 0,24% untuk tekanan positif dan tekanan negative.
Pemantauan Apnea Berbasis Internet of Things dengan Notifikasi di Mobilephone Muhammad Fuad Nurillah; Bambang Guruh Irianto; I Dewa Gede Hari Wisana
Jurnal Teknokes Vol 13 No 2 (2020): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penderita gangguan henti napas pada saat tidur (sleep apnea) semakin meningkat, hampir lebih dari 80% orang menderita gangguan ini tidak terdiagnosis. Gejala dari sleep apnea yaitu terjadinya henti napas selama lebih dari 10 detik. Tujuan dari penelitian ini adalah merancang alat monitor apnea agar dapat mendeteksi gejala sleep apnea. Kontribusi dalam penelitian ini adalah sistem monitoring atau pemantauan jarak jauh sehingga orang lain dapat memantau kondisi pasien meskipun tidak sedang mendampinginya. Agar dapat mempermudah proses monitoring dan pendiagnosaan pasien maka dibuatlah alat apnea monitor berbasis Internet of Things dengan dilengkapi notifikasi pada android sehingga dapat dengan cepat dilakukannya penanganan pada pasien. Perancangan alat ini menggunakan piezoelektrik sebagai sensor pendeteksi pernapasan yang diletakkan pada bagian perut pasien. Output sensor berupa tegangan kemudian dikondisikan pada rangkaian PSA. Menggunakan mikrokontroler ESP32 sebagai pemrosesan sinyal yang dibentuk oleh rangkaian PSA dan diolah menjadi nilai respirasi. Nilai respirasi kemudian dikirimkan ke perangkat android menggunakan jaringan Wi-Fi dan ditampilkan pada aplikasi Blynk. Apabila terdeteksi kejadian henti napas selama lebih dari 10 detik maka alat akan menyalakan indikator dan mengaktifkan notifikasi pada android. Penelitian ini melakukan pengukuran amplitudo sinyal respirasi dan nilai respirasi terhadap responden dan juga melakukan pengujian pengiriman jarak jauh menggunakan jaringan Wi-Fi. Hasil pengujian pada penelitian ini alat dapat mengirimkan data dengan baik dan tanpa loss data dengan jarak 5 meter dalam ruangan dan 10 meter berbeda ruangan. Alat ini dapat diimplementasikan pada proses monitoring pasien sehingga dapat mengurangi penderita gangguan sleep apnea. Patients with breathing problems during sleep (sleep apnea) are increasing, almost more than 80% of people suffering from this disorder are not diagnosed. Symptoms of sleep apnea include breathing for more than 10 seconds. The purpose of this study is to design apnea monitoring devices to detect sleep apnea symptoms. The contribution in this study is a monitoring system or remote monitoring so that others can monitor the condition of the patient even though not accompanying him. In order to simplify the process of monitoring and diagnosing patients, an apnea monitor based on the Internet of Things is made with notifications on android so that treatment can be quickly performed on patients. The design of this device uses piezoelectric as a respiratory detection sensor which is placed on the patient's abdomen. The sensor output in the form of voltage is then conditioned on the PSA circuit. Using the ESP32 microcontroller as signal processing which is formed by the PSA circuit and processed into respiration values. Respiration values ​​are then sent to the Android device using a Wi-Fi network and displayed on the Blynk app If a stop breathing event is detected for more than 10 seconds, the device will turn on the indicator and activate the notification on the android. The test results in this study the tool can send data properly and without loss data with a distance of 5 meters in a room and 10 meters in a different room. This tool can be implemented in the patient monitoring process so that it can reduce sufferers of sleep apnea disorders.
Rancang Bangun Deffibrilator Dengan Joule Rendah Muhammad Iqbal; Bambang Guruh Irianto; Endro Yulianto
Jurnal Teknokes Vol 13 No 2 (2020): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ventrikel Fibrilasi adalah irama yang umumnya didapat di permulaan henti jantung dan Ventrikel Takikardi yang disebabkan oleh gangguan listrik di jantung yang mengontrol gerakan pompa pada bilik atau ventrikel jantung, hal ini menyebabkan bilik berdenyut terlalu cepat dari biasanya. Ventrikel Fibrilasi dan Ventrikel Takikardi adalah sebagian dari penyebab kegagalan fungsi jantung, apabila tidak segera ditangani akan menyebabkan kematian. Salah satu cara menangani permasalahan ini yaitu dengan memberikan energi dengan bentuk kejut listrik dalam jumlah tertentu. Tujuan dari penelitian adalah untuk merancang sebuah modul defibrilator yang dapat menghasilkan energi dengan bentuk kejut listrik dan dilengkapi dengan mode sinkron dan asinkron. Kontribusi penelitian ini adalah sistem discharge dapat dilakukan secara defibrilasi dengan menekan tombol discharge atau disebut juga dengan mode asinkron dan sistem discharge dapat dilakukan secara kardioversi dengan menekan tombol discharge serta melakukan penyadapan BPM yang telah tersedia pada alat atau disebut juga dengan mode sinkron. Penelitian ini menggunakan modul ekg AD8232 untuk melakukan penyedapan sinyal ekg sehingga dapat menghasilkan nilai BPM. Komponen yang digunakan seperti Arduino Atmega untuk melakukan pemprosesan alat, Kapasitor dengan Kapsitansi tertentu untuk melakukan penyimpanan energi sementara, dan TFT NEXTION 2.8” sebagai tampilan dan tempat setting alat. Untuk penelitian lebih lanjut dapat menambahkan tampilan sinyal ekg, menambah besaran energi, dan menggunakan baterai untuk membuat perangkat portabel.