p-Index From 2020 - 2025
0.444
P-Index
This Author published in this journals
All Journal Jurnal Teknokes
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison of Pressure Sensor in Flow Analyzer Design for Peep Measurement on Ventilators Wakidi, Levana Forra; Amrinsani, Farid; Zeha, Alfi Nur; Dewiningrum, Riqqah; Nyatte, Steyve
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Flow Analyzer allows measurement of flow, pressure, volume, and oxygen concentration delivered to the patient, with PEEP (Positive End Expiratory Pressure) being a crucial parameter in mechanical ventilation. Incorrect PEEP values can elevate the risk of patient mortality. The recommended PEEP range is 5-24 cmH2O, and administration is determined by the patient's clinical condition. This research aims to identify stable and highly accurate pressure sensors by comparing the MPX2010DP and MPX5010DP sensors with pressure readings from a Digital Pressure Meter (DPM). The study involves 5 repetitions of a lung test, each with 11 pressure reading points, within a pressure measurement range of 0-30 cmH2O. The DPM has a resolution of 1 cmH2O, while both pressure sensors have a resolution of 0.01 cmH2O. Results indicated that the MPX2010DP sensor has the smallest error percentage, specifically 0.00%, at a pressure increase of 5 cmH2O and 20 cmH2O. Conversely, the MPX2010DP sensor shows the largest error percentage, 5.16%, when the pressure decreases by 5 cmH2O. The highest standard deviation of 0.52 is observed in the MPX5010DP sensor at a 20 cmH2O pressure increase, while the maximum correction value of 0.54 is found in the MPX5010DP sensor at a 25 cmH2O pressure increase. According to the ANOVA test, there is no significant difference in pressure produced between the MPX2010DP sensor, MPX5010DP sensor, and DPM. The sensors are well-calibrated and provide accurate readings according to calibration tool standards. Therefore, the MPX2010DP and MPX5010DP sensors are deemed accurate for measuring PEEP parameters in ventilators. Based on the obtained data, it can be concluded that the MPX2010DP sensor is more accurate and stable.
PID Temperature Control of Baby Incubator Transport Battery Efficiency Vidaryanto, Angga; Wisana, I.D.G Hari; Kholiq, Abd; Dewiningrum, Riqqah
Jurnal Teknokes Vol. 17 No. 1 (2024): March
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Transport baby incubators are used to keep babies warm and safe while in transport using battery voltage sources or DC electricity, which are portable and can be used without getting a supply of electrical energy. The problem that often occurs with this tool is the limited battery power system. causes a risk to the infant in the event of power failure or battery exhaustion. We aim to evaluate the battery efficiency of Baby Incubator Transport using a PID temperature controller. The evaluation is done by comparing and analyzing the battery voltage of the device to the standard device, as well as considering the setting temperature and duration of use of the device so that it can provide convenience in evacuating babies in an emergency. The tool uses the PID method to control temperature and maximize battery power. In this design, researchers only look at the efficiency of the PID method on temperature control and the battery to be used. This module will have a display that will display the battery voltage value, battery voltage percentage, skin temperature, chamber temperature, humidity, and temperature control that has been selected in the form of a graph. Compared with the digital multimeter measuring instrument. From the results of data collection, it can be concluded that the PID method has a faster rise time to reach the setting temperature, while the fuzzy method has a longer rise time to reach the setting temperature. However, the PID method requires more battery power than the Fuzzy method. The measurement results between the display and the measuring device have a difference of 3.1% at 34°C, at 35°C it is 3.9%, and at 36°C it is 4.7%. The biggest error is at a temperature of 36ºC, the smallest is at a temperature of 34ºC. Based on the results of the observation analysis of battery power consumption, it is found that the smaller the battery energy, the smaller the current issued, as well as the voltage issued. But if the load is large, the current is inversely proportional to the center, the battery voltage decreases while the current increases.