Claim Missing Document
Check
Articles

Found 4 Documents
Search

DIGITAL MARKETING STRATEGY FOR MSME SALES Amelia, Nitya; Prasojo, Bayu Hari; Racmadany, Andry; Pebrianggara , Alshaf
Proceeding of International Conference on Social Science and Humanity Vol. 2 No. 1 (2025): Proceeding of International Conference on Social Science and Humanity
Publisher : PT ANTIS INTERNATIONAL PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61796/icossh.v2i1.236

Abstract

Objective: Digital marketing strategies play a crucial role in increasing the sales of micro, small, and medium enterprises (MSMEs) in Indonesia, especially in the rapidly evolving era of digitalization. This study aims to analyze the impact of digital marketing strategies, such as the use of social media, paid advertising, SEO (Search Engine Optimization), content marketing, and digital payment methods, on MSME performance. Method: The research employs a qualitative approach through a literature review based on relevant research articles. Results: The findings indicate that social media and paid advertising significantly contribute to expanding market reach and enhancing direct consumer interaction. SEO, although requiring more time to achieve optimal results, positively impacts the online visibility of MSMEs. Meanwhile, content marketing has a relatively lower impact, likely due to limited resources or expertise in creating effective content. The use of digital payment methods simplifies transactions and enhances the customer experience. Socio-psychological factors and credibility are also identified as critical elements in digital marketing communication strategies. Novelty: With the significant potential of MSMEs in Indonesia, optimizing digital marketing strategies can support business growth and competitiveness in the digital marketplace. This study recommends further exploration to identify other digital marketing strategies that have not been thoroughly examined.
THE INFLUENCE OF AFFILIATE LIVE STREAMING ON SHOPEE IN CONSUMER BUYING INTEREST Ludiana, Dina; Prasojo, Bayu Hari; Racmadany, Andry; Pebrianggara , Alshaf
Proceeding of International Conference on Social Science and Humanity Vol. 2 No. 1 (2025): Proceeding of International Conference on Social Science and Humanity
Publisher : PT ANTIS INTERNATIONAL PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61796/icossh.v2i1.239

Abstract

Objective: This study aims to determine the effect of live streaming affiliates at shopee in consumer buying interest to see how Live Streaming and Affiliate Marketing have an impact on Consumer Purchase Interest at Shopee. Method: The method used in this research is quantitative descriptive method, by distributing questionnaires and processing dala in this study using the Partial Least Square (PLS) method. Results: The results showed that live streaming and affiliate marketing have a positive influence on consumer buying interest, but this influence is not statistically significant. This suggests that both strategies need to be further optimised to have a greater impact on customer purchasing decisions. Novelty: The study examines the specific role of live streaming and affiliate marketing on Shopee—a combination of digital strategies not yet extensively studied together in the context of consumer purchase interest—offering new insights into the nuanced impact of these tools on online shopping behavior.
Peningkatan Literasi Digital Marketing Mahasiswa Asean Melalui Digicultour Abdimas Internasional di Pangasinan State University, Filipina Romadhoni , Afifani Aulida; Pebrianggara , Alshaf; Andry Rachmadany
Abdimas Toddopuli: Jurnal Pengabdian Pada Masyarakat Vol. 7 No. 1 (2025): Volume 7 No 1, Desember 2025
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/atjpm.v7i1.7157

Abstract

Di era transformasi digital, literasi digital marketing menjadi kunci utama dalam meningkatkan daya saing pelaku usaha, khususnya bagi Usaha Mikro, Kecil, dan Menengah (UMKM). Program DigiCulTour merupakan kolaborasi internasional antara Universitas Muhammadiyah Sidoarjo (UMSIDA) dan Pangasinan State University (PSU) Filipina, yang bertujuan meningkatkan literasi digital marketing mahasiswa ASEAN melalui pelatihan, seminar, serta kompetisi pitching. Kegiatan ini memfokuskan pada pemanfaatan platform media sosial seperti TikTok, Instagram, dan Facebook Marketplace yang populer di Indonesia dan Filipina. Metode pelaksanaan mencakup penyampaian materi, studi kasus, praktik kampanye digital, serta evaluasi langsung. Hasil kegiatan menunjukkan peningkatan pemahaman peserta terhadap konsep digital marketing, terbentuknya forum diskusi internasional, serta penguatan keterampilan soft skill komunikasi dan kolaborasi lintas budaya. Program ini tidak hanya memperluas wawasan global mahasiswa, tetapi juga menjadi sarana efektif dalam penguatan kompetensi digital marketing di kawasan ASEAN, mendorong pengembangan usaha yang adaptif di era digital.
ANALISIS SENTIMEN ULASAN APLIKASI PLN MOBILE MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASFIFIER Panduni, Bima; Pebrianggara , Alshaf; Yulianto, Mochammad Rizal; Almanfaluti, Istian Kriya
ZONAsi: Jurnal Sistem Informasi Vol. 7 No. 3 (2025): Publikasi artikel ZONAsi: Jurnal Sistem Informasi Periode September 2025
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/aeyjxp28

Abstract

Seiring dengan meningkatnya penggunaan aplikasi digital, ulasan pengguna menjadi sumber informasi penting untuk memahami kepuasan dan kebutuhan pelanggan. Aplikasi PLN Mobile sebagai salah satu aplikasi layanan publik yang banyak digunakan. Penelitian ini bertujuan untuk menganalisis sentimen ulasan pengguna aplikasi PLN Mobile menggunakan algoritma Naive Bayes Classifier. Data diperoleh dari aplikasi Google Playstore dan mendapatkan 400 data, pembagian data menggunakan rasio 50:50. Pengumpulan dan pengolahan data menggunakan tools Google Colab dengan menggunakan bahasa pemrograman Python. Dari 200 data yang digunakan, model Naive Bayes Classifier menunjukkan kinerja yang cukup baik. Untuk sentimen positif, nilai presisi yang dicapai 88%, recall 76%, dan f1-score 82%, dengan dukungan 143 ulasan. Hasil akurasi yang diperoleh adalah 76%. Hasil ini menunjukkan bahwa algoritma Naive Bayes Classifier dapat digunakan secara efektif untuk mengklasifikasikan sentimen ulasan pengguna aplikasi PLN Mobile, memberikan wawasan berharga bagi pengembang aplikasi untuk meningkatkan layanan.