Al Ghifari, Muhammad Akmal
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementation of Extra Trees Classifier and Chi-Square Feature Selection for Early Detection of Liver Disease Al Ghifari, Muhammad Akmal; Budiman, Irwan; Saragih, Triando Hamonangan; Mazdadi, Muhammad Itqan; Herteno, Rudy; Rozaq, Hasri Akbar Awal
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.4261

Abstract

The imbalanced distribution of medical data poses challenges in accurately detecting liver disease, which is crucial as symptoms often remain unnoticed until advanced stages. This study examines the application of the Extra Trees Classifier algorithm and chi-square feature selection for early detection of liver disease. Compared to traditional methods like Random Forest and SVM, the Extra Trees Classifier offers enhanced computational efficiency and better handling of imbalanced datasets, while chi-square feature selection helps identify the most relevant medical indicators. The data consists of five medical variables likely to be laboratory test results from patient samples, with labels indicating classes A and B. The data is randomly divided with a ratio of 80% for each class. To address data imbalance, SMOTE technique was applied before the data was randomly split into a ratio of 80% for training and 20% for testing to ensure effective learning and testing of the model's performance. The results showed that with the help of chi-square feature selection, the Extra Trees Classifier algorithm could provide fairly accurate predictions in liver disease classification, with an accuracy of 82.6%, sensitivity of 85.5%, precision of 78.3%, and F1-Score of 81.7%. These results demonstrate significant improvement over existing methods, and the proposed approach can aid healthcare practitioners in making timely diagnostic decisions, potentially reducing mortality rates through early intervention in liver disease cases.