Claim Missing Document
Check
Articles

Found 5 Documents
Search

Gender Classification Based on Electrocardiogram Signals Using Long Short Term Memory and Bidirectional Long Short Term Memory Halim, Kevin Yudhaprawira; Nugrahadi, Dodon Turianto; Faisal, Mohammad Reza; Herteno, Rudy; Budiman, Irwan
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26354

Abstract

Gender classification by computer is essential for applications in many domains, such as human-computer interaction or biometric system applications. Generally, gender classification by computer can be done by using a face photo, fingerprint, or voice. However, researchers have demonstrated the potential of the electrocardiogram (ECG) as a biometric recognition and gender classification. In facilitating the process of gender classification based on ECG signals, a method is needed, namely Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (Bi-LSTM). Researchers use these two methods because of the ability of these two methods to deal with sequential problems such as ECG signals. The inputs used in both methods generally use one-dimensional data with a generally large number of signal features. The dataset used in this study has a total of 10,000 features. This research was conducted on changing the input shape to determine its effect on classification performance in the LSTM and Bi-LSTM methods. Each method will be tested with input with 11 different shapes. The best accuracy results obtained are 79.03% with an input shape size of 100×100 in the LSTM method. Moreover, the best accuracy in the Bi-LSTM method with input shapes of 250×40 is 74.19%. The main contribution of this study is to share the impact of various input shape sizes to enhance the performance of gender classification based on ECG signals using LSTM and Bi-LSTM methods. Additionally, this study contributes for selecting an appropriate method between LSTM and Bi-LSTM on ECG signals for gender classification. 
Comparative Performance Evaluation of Linear, Bagging, and Boosting Models Using BorutaSHAP for Software Defect Prediction on NASA MDP Datasets Kartika, Najla Putri; Herteno, Rudy; Budiman, Irwan; Nugrahadi, Dodon Turianto; Abadi, Friska; Ahmad, Umar Ali; Faisal, Mohammad Reza
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5393

Abstract

Software defect prediction aims to identify potentially defective modules early on in order to improve software reliability and reduce maintenance costs. However, challenges such as high feature dimensions, irrelevant metrics, and class imbalance often reduce the performance of prediction models. This research aims to compare the performance of three classification model groups—linear, bagging, and boosting—combined with the BorutaSHAP feature selection method to improve prediction stability and interpretability. A total of twelve datasets from the NASA Metrics Data Program (MDP) were used as test references. The research stages included data preprocessing, class balancing using the Synthetic Minority Oversampling Technique (SMOTE), feature selection with BorutaSHAP, and model training using five algorithms, namely Logistic Regression, Linear SVC, Random Forest, Extra Trees, and XGBoost. The evaluation was conducted with Stratified 5-Fold Cross-Validation using the F1-score and Area Under the Curve (AUC) metrics. The experimental results showed that tree-based ensemble models provided the most consistent performance, with Extra Trees recording the highest average AUC of 0.794 ± 0.05, followed by Random Forest (0.783 ± 0.06). The XGBoost model provided the best results on the PC4 dataset (AUC = 0.937 ± 0.008), demonstrating its ability to handle complex data patterns. These findings prove that BorutaSHAP is effective in filtering relevant features, improving classification reliability, and strengthening transparency and interpretability in the Explainable Artificial Intelligence (XAI) framework for software quality improvement.
Digitalisasi Pelaporan Indeks K menggunakan K-Smard: Studi Empiris pada Industri Kelapa Sawit Kalimantan Selatan Dahniar, Dahniar; Sudirwo, Sudirwo; Mikrianto, Edi; Herteno, Rudy; Wibowo, Alan Dwi; Septiana, Nurmelati
Jurnal Samudra Ekonomi dan Bisnis Vol 17 No 1 (2026): JSEB
Publisher : Fakultas Ekonomi dan Bisnis Universitas Samudra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33059/jseb.v17i1.13711

Abstract

The K Index, which serves as the basis for revenue sharing between palm oil mills and smallholders, still exhibits monthly fluctuations that should not theoretically occur. This condition highlights the need for a more consistent, standardized, and user-friendly K Index calculation system supported by digital applications. This study aims to develop and validate the K-SMARD application as an information system for the automated calculation and reporting of the K Index. System development employed the waterfall model, while testing used real K Index data from palm oil mills and was evaluated using a comparative statistical approach against the conventional Excel-based method. The results show that K-SMARD produces accurate and consistent K Index values with no significant differences, while improving efficiency and reporting reliability.
Multi-Criteria Decision Making dalam Seleksi Fitur Ensemble untuk Prediksi Cacat Perangkat Lunak Fikri, Muhammad; Herteno, Rudy; Adi Nugroho, Radityo; Wahyu Saputro, Setyo; Abadi, Friska
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 6: Desember 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2025125

Abstract

Prediksi cacat perangkat lunak merupakan upaya strategis dalam meningkatkan kualitas produk melalui identifikasi dini modul yang berpotensi cacat. Kinerja prediksi dipengaruhi oleh pemilihan fitur, karena informasi yang berlebihan dan tidak relevan dapat mempengaruhi kualitas pembelajaran model. Seleksi fitur ensemble dinilai efektif dalam menyeleksi fitur yang relevan dengan menggabungkan beberapa metode seleksi fitur berbasis filter. Diperlukan mekanisme integrasi untuk menyatukan hasil dari empat teknik filter—Mutual Information, Fisher Score, Uncertainty dan Relief. Penelitian ini membandingkan empat metode Multi‑Criteria Decision Making—TOPSIS, VIKOR, EDAS, dan WASPAS—yang bekerja dengan merangking nilai relevansi fitur hasil seleksi filter tersebut. Sepuluh fitur teratas dari tiap metode kemudian dievaluasi menggunakan model Random Forest dengan metrik AUC melalui K‑Fold cross‑validation. Dari 12 dataset NASA MDP yang diuji, TOPSIS menunjukkan kinerja paling konsisten dan terbaik dengan nilai rata-rata AUC sebesar 0,8038. Temuan ini menegaskan pentingnya pemilihan metode integrasi yang tepat dalam meningkatkan akurasi prediksi cacat perangkat lunak dan memberikan panduan bagi pengembangan model yang lebih efektif.   Abstract Software defect prediction is a strategic effort to improve product quality through early identification of potentially defective modules. Prediction performance is influenced by feature selection, because redundant and irrelevant information can affect the quality of model learning. Ensemble feature selection is considered effective in selecting relevant features by combining several filter-based feature selection methods. An integration mechanism is needed to unify the results of four filter techniques—Mutual Information, Fisher Score, Uncertainty and Relief. This study compares four Multi-Criteria Decision Making methods—TOPSIS, VIKOR, EDAS, and WASPAS—which work by ranking the relevance values ​​of the filter-selected features. The top ten features from each method are then evaluated using the Random Forest model with the AUC metric through K-Fold cross-validation. Of the 12 NASA MDP datasets tested, TOPSIS showed the most consistent and best performance with an average AUC value of 0.8038. These findings emphasize the importance of choosing the right integration method in improving the accuracy of software defect prediction and provide guidance for the development of more effective models.
Comparative Study of Filter, Wrapper, and Hybrid Feature Selection Using Tree-Based Classifiers for Software Defect Prediction Rahmayanti, Rahmayanti; Herteno, Rudy; Saputro, Setyo Wahyu; Saragih, Triando Hamonangan; Abadi, Friska
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 8 No. 1 (2026): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v8i1.294

Abstract

Software defect prediction (SDP) is essential for improving software reliability by enabling the early identification of modules that may contain defects before the release stage. SDP commonly exhibits redundant or non-contributory metrics, underscoring the need for feature selection to derive a more informative subset. To address this problem, the present study investigates and compares the effectiveness of three feature-selection strategies: SelectKBest (SKB), Recursive Feature Elimination (RFE), and the hybrid SKB+RFE, in enhancing the performance of tree-based classifiers on the NASA Metrics Data Program (MDP) data collections. The study utilizes three classification algorithms, namely Random Forest (RF), Extra Trees (ET), and Bagging (Decision Tree), with Area Under the Curve (AUC) serving as the primary metric for assessing model performance. Experimental results reveal that the RFE and Extra Trees combination yields the top performance, producing an average AUC of 0.7855. This is subsequently followed by the SKB+RFE+ET configuration, which achieves an AUC of 0.7809, and SKB+ET at 0.7776. These findings demonstrate that iterative wrapper-based approaches such as RFE can identify more relevant and effective feature subsets than filter or hybrid strategies, with the RFE+Extra Trees configuration yielding the strongest overall predictive performance and wrapper-based methods exhibiting higher stability across heterogeneous datasets. Even without hyperparameter tuning and relying solely on class-weighting rather than explicit resampling techniques, the findings offer empirical insight into the isolated influence of feature selection on predictive performance. Overall, the study confirms that RFE combined with Extra Trees offers the strongest predictive performance on NASA MDP data collections and forms a foundation for developing more adaptive and robust models.