Kafilla, Princess Iqlima
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Enhancing Customer Purchase Behavior Prediction Using PSO-Tuned Ensemble Machine Learning Models Kafilla, Princess Iqlima; Utomo, Fandy Setyo; Karyono, Giat
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.4952

Abstract

Predicting customer purchase behavior remains a significant challenge in e-commerce and marketing analytics due to its complex and nonlinear patterns. This study introduces a machine learning framework that integrates ensemble learning models with Particle Swarm Optimization (PSO) for hyperparameter tuning to improve classification accuracy and class discrimination. Several ensemble algorithms, including CatBoost, XGBoost, LightGBM, AdaBoost, and Gradient Boosting, were compared against a baseline Logistic Regression model, both with default and PSO-optimized configurations. Experiments on a real-world e-commerce dataset containing behavioral and demographic variables showed that ensemble methods substantially outperformed traditional models across accuracy, F1-score, and ROC AUC metrics. Notably, the PSO-tuned Gradient Boosting model achieved the highest ROC AUC of 0.9547, improving the AUC by approximately 0.0076 compared to its default configuration, while CatBoost obtained the highest overall accuracy and F1-score. PSO optimization was especially effective in enhancing simpler models such as Logistic Regression but showed marginal gains and some convergence instability in more complex ensemble models. Feature importance analyses consistently identified variables such as time spent on the website, discounts availed, age, and income as key drivers of purchase intent. These findings demonstrate the benefit of combining ensemble learning with metaheuristic optimization, offering actionable insights for developing robust, data-driven marketing strategies.