Hadi , Moch. Zen Samsono
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Edge Computing-Based Automated Vehicle Classification System Using the MobileNet V2 Model Widyatra Sudibyo, Rahardhita; Mahmudah, Haniah; Hadi , Moch. Zen Samsono; Sa'adah, Nihayatus
The Indonesian Journal of Computer Science Vol. 11 No. 3 (2022): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v11i3.3106

Abstract

The volume of traffic in one day is referred to as the average daily traffic volume. The Average Daily Traffic System (LHR) is also used to detect road damage caused by excessive vehicle loads. In the LHR system, vehicle data is still collected manually, with humans calculating the type and number of vehicles based on observations made and then divided into a time span. As a result, a system with a camera and deep learning data processing is required to automatically calculate the type and number of vehicles. The goal of this research is to develop edge computing systems by improving the system's performance in the calculation and classification of vehicles using the SSD MobileNet V2 model. The results of the MobileNet model scenario 5 have the lowest loss value of the five scenarios. The MobileNet V2 model can better classify vehicle types with a 65 FPS inference process.