Hanif Abdul Aziz, Nabil
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Penilaian Pinjaman Agunan pada PT KB Finansia Multi Finance menggunakan Metode Random Forest Hanif Abdul Aziz, Nabil; Krishna Putra, Eddie; Komarudin, Agus
JURNAL TEKNIK INFORMATIKA UNIS Vol. 12 No. 2 (2024): Jutis (Jurnal Teknik Informatika)
Publisher : Universitas Islam Syekh Yusuf

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33592/jutis.v12i2.5153

Abstract

Dalam dunia perbankan, terdapat tawaran kepada nasabah berupa pinjaman dengan syarat agunan, seperti rumah, tanah, atau kendaraan sebagai jaminan. Proses ini bertujuan untuk mengurangi risiko kredit bagi bank, karena jika nasabah gagal membayar, bank dapat mengambil dan menjual agunan untuk menutup kerugian. Penelitian ini bertujuan untuk menganalisis efektivitas kebijakan pinjaman dengan agunan di sektor perbankan serta dampaknya terhadap tingkat risiko kredit dan kepuasan nasabah. Dengan menggunakan metode data mining dan teknik klasifikasi Random Forest, studi ini akan mengevaluasi pola pembayaran nasabah, tingkat keberhasilan pengembalian pinjaman, dan elemen-elemen yang mempengaruhi pilihan nasabah dalam memanfaatkan layanan pinjaman dengan jaminan. Penelitian ini juga mempertimbangkan ketidakseimbangan data dengan menerapkan Teknik Oversampling, seperti Random Over Sampling untuk meningkatkan jumlah sampel pada kelas minoritas sehingga menjadi seimbang dengan kelas mayoritas. Hasil penelitian akan membandingkan efektivitas kedua teknik tersebut dalam memperbaiki ketepatan prediksi. Hasil penelitian ini diharapkan dapat memberikan wawasan bagi bank untuk mengoptimalkan kebijakan pinjaman mereka, meningkatkan manajemen risiko, dan menawarkan produk pinjaman yang lebih sesuai dengan kebutuhan nasabah.