Adli, Muhammad Zimamul
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Multi-Classification of Pakcoy Plants using Machine Learning Methods with Smart Greenhouse Dataset Wibowo, Agung Surya; Mentari, Osphanie; Adli, Muhammad Zimamul; Kusnayadi, Kusnayadi
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 4 (2025): MALCOM October 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i4.2212

Abstract

This research aims to design and implement a monitoring and classification system for Pakcoy (Brassica rapa L.) plant conditions based on the Internet of Things (IoT) and machine learning algorithms in the Smart Greenhouse of Universitas Islam Nusantara. This study represents one of the applications of IoT and machine learning technology advancements to improve efficiency and effectiveness in the agricultural sector. The developed system utilizes CO?, SHT30, BH1750, and DHT22 sensors to monitor environmental parameters in real-time, including temperature, humidity, light intensity, panel box temperature, and CO? concentration. The monitoring data are used as input for classifying plant conditions using five machine learning methods: Support Vector Machine (SVM), Random Forest, Decision Tree, Logistic Regression, and Multilayer Perceptron (MLP). The results show that the Random Forest algorithm achieves the best performance, with an accuracy of 84%, precision of 86%, recall of 87%, and F1-score of 86%. The implementation of this system serves as a concrete step toward enhancing the efficiency, sustainability, and modernization of hydroponic agriculture in Indonesia