Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS K-MEANS DENGAN RAPIDMINER UNTUK KLASIFIKASI KUALITAS PENDIDIKAN SEKOLAH DASAR DI INDONESIA Irwansyah, Muhammad Aziiz; Alinda, Yelli Nur; Nur’Aini, Risma; Alfitrah, Intan Aidita; Khairani, Annisa; Tania, Ken Dhita; Meiriza, Allsela; Rifai, Ahmad
ZONAsi: Jurnal Sistem Informasi Vol. 7 No. 3 (2025): Publikasi artikel ZONAsi: Jurnal Sistem Informasi Periode September 2025
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/a0hhsc57

Abstract

Penelitian ini menerapkan metode K-Means Clustering untuk mengelompokkan 38 provinsi di Indonesia berdasarkan kualitas pendidikan dasar. Tujuan penelitian ini adalah mengidentifikasi pola distribusi pendidikan dengan mempertimbangkan faktor tenaga pendidik, angka putus sekolah, kondisi infrastruktur sekolah, serta tingkat kesejahteraan guru. Dataset yang digunakan berasal dari Kaggle SD tahun 2023-2024 dan data Upah Minimum Provinsi (UMP) tahun 2024, kemudian dianalisis melalui tahapan Knowledge Discovery in Database (KDD) menggunakan RapidMiner. Hasil klasterisasi menghasilkan tiga kelompok provinsi dengan karakteristik berbeda: Klaster 0 dengan jumlah sekolah dan siswa tinggi serta angka putus sekolah sedang; Klaster 1 dengan tenaga pendidik dan ruang kelas terbanyak serta angka putus sekolah terendah; dan Klaster 2 dengan angka putus sekolah tertinggi meskipun UMP tertinggi. Evaluasi kualitas klasterisasi menggunakan Davies-Bouldin Index (DBI = 0,162) menunjukkan hasil yang baik. Berdasarkan analisis magnitudo vektor Euclidean, faktor dominan dalam pembentukan klaster adalah Kepala Sekolah dan Guru (1,376), Putus Sekolah (1,368), Ruang Kelas (baik) (1,324), Sekolah (1,312), Siswa (1,286), dan UMP (1,214). Penelitian ini menyimpulkan bahwa faktor tenaga pendidik dan kondisi infrastruktur memiliki dampak lebih besar terhadap kualitas pendidikan dasar dibandingkan faktor ekonomi.
Analisis Klasterisasi Kualitas Internet Seluler Menggunakan Metode K-Means dan Gaussian Mixture Model Irwansyah, Muhammad Aziiz; Meiriza, Allsela; Lestarini, Dinda
Building of Informatics, Technology and Science (BITS) Vol 7 No 3 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i3.8615

Abstract

This study utilizes internet network data from Ookla Open Data (Speedtest Global Performance), comprising three main variables: download speed, upload speed, and latency. The aim is to analyze the condition and performance of mobile internet networks across 17 regencies/cities in South Sumatera Province in 2025 and to provide data-driven recommendations for the Department of Communication and Informatics to promote equitable and improved digital infrastructure through a Knowledge Discovery in Databases (KDD) approach. The applied methods include RobustScaler for data normalization, Principal Component Analysis (PCA) for dimensionality reduction, and K-Means and Gaussian Mixture Model (GMM) algorithms for clustering regions based on network characteristics. The analysis shows that both algorithms form three clusters (K=3) with distinct patterns. GMM demonstrates higher stability than K-Means, achieving a Silhouette score of 0.426 and Davies–Bouldin Index of 0.284, compared to K-Means with 0.351 and 0.688, while the lower Calinski–Harabasz score of GMM (9.960) indicates a trade-off between cluster compactness and stability, highlighting its adaptive behavior to data variation. Urban areas such as Palembang and Prabumulih belong to the high-performance cluster, whereas Ogan Komering Ulu Selatan lies in the low-performance cluster (18.87 Mbps; 33 ms), revealing a digital gap of approximately 18 Mbps across regions. These findings emphasize the need for equitable digital infrastructure strategies through fiber-optic expansion, BTS capacity enhancement, and multi-stakeholder collaboration toward Indonesia’s Digital Vision 2045.