Claim Missing Document
Check
Articles

Found 2 Documents
Search

PERANCANGAN SISTEM OTOMATISASI CONTINUOUS DEPLOYMENT BERBASIS MONOLITHIC REPOSITORY Anggawie, Fikri; Kusumo, Dana Sulistyo; Richasdy, Donny
Telkatika: Jurnal Telekomunikasi Elektro Komputasi & Informatika Vol. 2 No. 1 (2022): Desember 2022
Publisher : Perpustakaan Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakOtomatisasi adalah hal yang sudah seharusnya diterapkan sebuah perusahaan yang mengerjakan proyek besar terdiri dari dua orang atau lebih dalam pengembangan aplikasi mereka. Tanpa adanya Otomatisasi maka dalam melakukan perubahan code meskipun berskala kecil akan memakan banyak waktu dan biaya tentunya. Otomatisasi menggunakan metode continuousdeployment dan aplikasi jenkins, docker dan menerapkan prinsip monolithic repository maka akan banyak membantu dalam penerapan otomatisasi. Tugas akhir kali ini berfokus pada pengembangan dan integrasi menggunakan metode continuous deployment dan monolithic repository serta menggunakan tools jenkins dan docker dalam pengerjaan nya. Penerapan metodecontinuous deployment dan monolithic repository menggunakan jenkins guna mempermudah dalam melakukan integrasi dikarenakan jenkins bersifat open source dan memiliki banyak opsi plug-in. docker sendiri berperan sebagai container guna meletakan semua kebutuhan integrasi aplikasi dan deployment. Adanya sistem otomatisasi adalah bentuk penghematan sumberdaya seperti waktu dan penggunaan yang lebih mudah. Jadi integrasi dan penerapan menggunakan jenkins dan docker kita dapat menghemat banyak waktu dan juga jika ada perubahan pada code kita tidak memerlukan integrasi ulang dan dapat dirubah denganmudah.Kata kunci : continuous deployment, monolithic repository
Investigating Shallow Learning Methods for Optical Character Recognition of Indonesia’s Nusantara Scripts Sulistiyo, Mahmud Dwi; Putrada, Aji Gautama; Ihsan, Aditya Firman; Yunanto, Prasti Eko; Richasdy, Donny; Sailellah, Hassan Rizky Putra; Sabrina Adinda Sari
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 6 (2025): December 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i6.6648

Abstract

Indonesia has numerous regional scripts—or so-called Nusantara scripts—and recognizing them is important to preserve Indonesia's cultural heritage. The advances of AI and computer vision technologies make it possible for a machine to optically read the handwritten scripts through the Optical Character Recognition (OCR) technique. However, collecting some of the top OCR solutions and comprehensively investigating their performances on the Nusantara scripts is currently lacking. This study investigates and evaluates some shallow learning-based methods on our newly introduced datasets, consisting of more than 38,000-character images across 80 letter classes in total; here, we focus on three regional scripts: Javanese, Sundanese, and Balinese. The methods include Random Forest, SVM, Logistic Regression, and Gaussian Naïve Bayes, as well as boosting techniques such as XGBoost, Light GBM, and CatBoost. A 5-fold cross-validation approach assessed model performance based on accuracy, precision, recall, and F1-score. Based on the experimental results, the methods demonstrated their competitiveness in reaching the best models for scripts; in particular, XGBoost, Light GBM, and Random Forest-Gini were the winners for Javanese, Sundanese, and Balinese scripts, respectively. These findings demonstrate the effectiveness of ensemble learning methods for diverse handwritten scripts. Comparative analysis to prior deep learning studies is also discussed in this paper. In addition, this research also contributes to preserving Indonesian traditional scripts, as well as offers insights for future regional OCR in other countries.