Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Lubang Resapan Biopori sebagai Edukasi Pengelolaan Sampah Organik bagi Masyarakat Desa Gohong Evanggelion, Ekklesia; Maryanti, Dwi; Raysharie, Puput Iswandyah; Limbong, Yulianti; Santariasi Mahar, Viola Kristina; Astria, Seni Kasih; Delonio, Elvin; Gunawan, Teresia Novita; Khomariah, Suci Nur
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 6 No. 4 (2025): Edisi Oktober - Desember
Publisher : Lembaga Dongan Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55338/jpkmn.v6i4.7048

Abstract

Masalah limbah organik tetap menjadi tantangan yang mendesak dalam pengelolaan lingkungan di Indonesia. Teknologi Lubang Perkolasi Biopore (BPH) merupakan terobosan potensial yang dapat mengurangi volume limbah organik dan membantu dalam pengisian kembali air tanah. Penelitian ini bertujuan untuk mengkaji perubahan pengetahuan, sikap, dan perilaku masyarakat di Desa Gohong sebelum dan setelah penerapan praktik biopore melalui inisiatif Pembelajaran Layanan Masyarakat (CSL). Studi ini menggunakan kombinasi observasi, interaksi sosial, pembuatan biopore, dan survei pra-tes dan pasca-tes. Data kuantitatif dievaluasi menggunakan uji normalitas Jarque-Bera dan uji t sampel berpasangan, sedangkan data kualitatif dianalisis melalui analisis tema dari respons terbuka. Uji normalitas menunjukkan bahwa data mengikuti distribusi normal (p = 0.078602), dan uji t berpasangan menunjukkan tidak ada perbedaan yang signifikan secara statistik antara hasil pra- dan pasca-intervensi (t = -0.903; p = 0.3679). Namun, temuan kualitatif menyoroti peningkatan kesadaran masyarakat tentang manfaat biopores, baik sebagai metode pengelolaan limbah berkelanjutan maupun sebagai sumber pupuk organik. Oleh karena itu, implementasi kegiatan CSL terbukti bermanfaat sebagai sarana pendidikan lingkungan, meskipun hasil statistik langsung tidak signifikan. Bimbingan dan dukungan berkelanjutan tetap krusial untuk memperkuat praktik komunitas dalam mengelola limbah organik secara efektif.
A Theoretical Study of Multicollinearity and Linearity in Econometric Models for Economic Research Naufal, Muhammad Jiyad; Ompusunggu, Dicky Perwira; Sinaga, Rika Angelina; Sitohang, Marwindi Dola Anggia; Gunawan, Teresia Novita; Simatupang, Magdalena; Salsabila, Nur Syifa; Simanullang, Tesalonika; Hutasoit, Bobin Trianko
Jurnal Ekonomi Balance Vol. 21 No. 1 (2025): June 2025
Publisher : Perpustakaan dan Penerbitan Unismuh Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26618/jeb.v21i1.17031

Abstract

Multiple linear regression is a central analytical tool in econometric research used to model the relationship between a dependent variable and multiple independent variables. However, the accuracy and validity of such models are highly dependent on classical assumptions, particularly multicollinearity and linearity. Multicollinearity, characterized by high correlations among predictor variables, can inflate standard errors and obscure the true effects of individual variables. Linearity, meanwhile, ensures that the relationships between variables follow a straight-line pattern, which is essential for valid estimation and inference. This theoretical study aims to deepen the understanding of both assumptions, explore their causes, impacts, and identify methodological approaches for detection and correction. Employing a descriptive literature review method, the study synthesizes insights from contemporary econometric research to provide a conceptual framework for handling these issues. Key findings highlight that multicollinearity often arises from overlapping variables, small samples, and measurement errors, and can be addressed through variable elimination, transformation, or penalized regression techniques such as ridge and lasso regression. Linearity violations, frequently resulting from model misspecification or temporal dependencies, may be mitigated using data transformations, polynomial regression, or robust regression approaches. The study concludes that proper diagnostic tools and corrective strategies are essential for improving model reliability and enhancing the credibility of econometric findings in economic research.