Claim Missing Document
Check
Articles

Found 2 Documents
Search

APLIKASI AGLOMERASI MENGGUNAKAN CAO DAN OLI BEKAS DALAM UPAYA PENINGKATAN NILAI KALORI BATUBARA SUB-BITUMINOUS Setiarto Pratigto; Gladis Chertins Angel; Eriek Aristya Pradana Putra; Dewi Purnama Sari
Jurnal Cahaya Mandalika ISSN 2721-4796 (online) Vol. 5 No. 2 (2024)
Publisher : Institut Penelitian Dan Pengambangan Mandalika Indonesia (IP2MI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/jcm.v5i2.3289

Abstract

Coal is an energy source with enormous benefits, especially in the industrial world. Coal in Indonesia is mostly used as fuel for power plants. The use of low-calorie coal as fuel produces elements of impurities that will increase the ash and sulfur content of low-calorie coal combustion. So that it can cause exhaust gas emissions in the form of SOX, CO, and NOX. Agglomeration is one of the desulfurization technologies by washing clean coal in increasing the calorific value of coal by washing coal physically and chemically with the addition of water and oil as a separator. The purpose of this study was to determine the increase in the calorific value of coal after the agglomeration process. The results of agglomeration with CaO media and used oil can increase the calorific value of sub-bituminous coal with an average effectiveness of 21.49%. The average calorific value of coal samples after agglomeration increased from 5808 Cal/g to 7056.05 Cal/g.
Synthesis of Cellulose-Based Nanomaterials Agricultural Waste for Heavy Metal Adsorption in Water Applications Suhdi; Setiarto Pratigto
Science Journal Get Press Vol 2 No 4 (2025): October, 2025
Publisher : CV. Get Press Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69855/science.v2i4.275

Abstract

Heavy metal contamination in aquatic systems drives the need for sustainable and high-performance adsorbents. This study developed functionalized nanocellulose materials derived from rice husk waste for efficient removal of Pb(II), Cd(II), Cu(II), and Cr(VI) from aqueous solutions. Cellulose nanocrystals (CNCs) were synthesized via sulfuric acid hydrolysis and functionalized through TEMPO-mediated oxidation to introduce carboxyl groups, while cellulose nanofibrils (CNFs) were modified by ethylenediamine grafting to incorporate amine functionalities. Characterization using FTIR, XRD, and SEM confirmed successful surface modification, reduced crystallinity, and the presence of nanoscale fibrillar morphologies. Batch adsorption studies showed that CNC-TEMPO achieved a maximum adsorption capacity of 189.5 mg/g for Pb(II) and 112.3 mg/g for Cd(II) at pH 5–6, while CNF-Amine exhibited superior performance for Cr(VI) removal with a capacity of 205.5 mg/g at pH 3–4. Kinetic analysis followed a pseudo-second-order model (R² > 0.99), indicating chemisorption as the dominant mechanism, whereas isotherm fitting with the Langmuir model (R² > 0.98) confirmed monolayer adsorption. The enhanced adsorption capacity was attributed to electrostatic interactions and surface complexation between functional groups (–COO⁻, –NH₂) and metal ions. These findings highlight that rice husk–derived, surface-modified nanocellulose provides a low-cost, eco-friendly, and efficient alternative for heavy metal remediation and sustainable wastewater treatment applications.