Perkembangan teknologi digital mendorong meningkatnya kebutuhan masyarakat akan akses informasi yang cepat dan efisien. WordPress hadir sebagai solusi favorit dari hal tersebut. Namun, website berbasis WordPress juga menjadi salah satu target utama serangan siber karena banyaknya plugin dan tema yang rentan terhadap eksploitasi. Penelitian sebelumnya oleh Purwidyantoro (2025) telah berhasil mengembangkan sistem klasifikasi serangan menggunakan machine learning berbasis log ModSecurity. Namun, sistem tersebut masih menggunakan pendekatan batch processing, di mana proses inferensi dilakukan secara berkala dan tidak secara langsung ketika log baru tercatat. Keterbatasan ini memberikan celah waktu bagi penyerang untuk melancarkan aksinya sebelum deteksi dilakukan. Sebagai pengembangan dari pendekatan tersebut, penelitian ini bertujuan mengembangkan sistem deteksi serangan secara real-time berbasis log web server dengan memanfaatkan arsitektur pemrosesan data streaming menggunakan Apache Kafka. Sistem ini mengintegrasikan model klasifikasi Decision Tree yang telah dilatih untuk mengenali berbagai jenis serangan terhadap WordPress, seperti SQL Injection, Cross-Site Scripting (XSS), Remote Code Execution (RCE), dan File Inclusion. Log serangan dikirim secara streaming menggunakan Kafka Producer dan diterima oleh Kafka Consumer, yang kemudian memproses log, mengklasifikasikan, serta mengirimkan peringatan melalui Telegram secara otomatis apabila serangan terdeteksi. Evaluasi dilakukan terhadap 11 skenario serangan yang mencakup 6 jenis ancaman umum. Hasil pengujian menunjukkan bahwa sistem mampu mendeteksi 10 dari 11 skenario dengan akurasi 100% pada masing-masing 20 payload serangan. Namun, serangan Local File Inclusion (LFI) gagal terdeteksi, yang menunjukkan perlunya perbaikan pada tahapan pelabelan data atau preprocessing. Dari sisi performa, Kafka Producer mampu mencapai throughput 94,37 KB/s, sementara Kafka Consumer hanya 6,36 KB/s, dengan rata-rata latency 13,5 detik. Bottleneck terjadi di sisi consumer akibat beban proses klasifikasi dan pengiriman notifikasi. Penggunaan sumber daya juga menunjukkan perbedaan signifikan: Kafka Producer hanya memerlukan 0,2% CPU dan 27 MB memori, sedangkan Kafka Consumer memerlukan 4,1% CPU dan 131 MB memori. Temuan ini menunjukkan bahwa sistem deteksi yang dikembangkan mampu memberikan deteksi serangan secara lebih cepat dan efisien dibandingkan metode batch sebelumnya, sehingga lebih adaptif terhadap ancaman siber yang bersifat real-time.