Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Transformasi Produktivitas Tenaga Kerja Antara Sektor Pertanian dan Manufaktur Di Indonesia Periode 2004 – 2018 (Studi Kasus 30 Provinsi) Ramadhan, Muhammad Afif
Jurnal Ilmiah Mahasiswa FEB Vol. 8 No. 2
Publisher : Fakultas Ekonomi dan Bisnis Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk menganaisa transformasi produktivitas tenaga kerja sektor pertanian ke sektor manufaktur merupakan dalam upaya mempercepat transformasi structural ekonomi dengan merelokasi tenaga kerja keluar dari sektor pertanian dan menginvestigasi pola pertumbuhan produktivitas tenaga kerja sektor pertanian dan manufaktur di Indonesia periode 2004-2018. Analisis yang digunakan dalam penelitian ini adalah Analisis Regresi Data Panel untuk mengetahui konvergensi sigma, absolut, dan sigma. Analisis konvergensi digunakan untuk melihat pola pertumbuhan produktivitas tenaga kerja pada 30 provinsi apakah terjadi cathing up effect dan mengetahui pergeseran tenaga kerja ke sektor yang lebih produktif. Berdasarkan hasil analisis konvergensi ditunjukkan bahwa pada periode 2004-2018 telah terjadi konvergensi pertumbuhan produktivitas tenaga kerja sektor pertanian dan manufaktur, dan telah terjadi transformasi tenaga kerja pada dari sektor pertanian yang memiliki marjinal produk tenaga kerja yang rendah ke sektor manufaktur dengan memiliki marjinal produk tenaga kerja yang tinggi di Indonesia. Kata kunci: Transformasi, Konvergensi
Lean Six Sigma and FMEA for Pesticide Production Waste Reduction: Lean Six Sigma dan FMEA untuk Mengurangi Limbah Produksi Pestisida Ramadhan, Muhammad Afif; Rochmoeljati, Rr.
Indonesian Journal of Innovation Studies Vol. 27 No. 1 (2026): January
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/ijins.v27i1.1895

Abstract

General Background Pesticide manufacturing plays a critical role in supporting agricultural productivity, yet complex production systems frequently generate operational waste and product defects. Specific Background PT XYZ produces multiple pesticide variants, with powder pesticides showing the highest defect proportion during the October 2024–September 2025 period, indicating inefficiencies within the production process. Knowledge Gap Despite recurring defects and extended lead time, systematic waste identification and structured failure risk prioritization had not been comprehensively applied in this production context. Aims This study aimed to identify dominant waste types, evaluate process performance, and formulate improvement recommendations using Lean Six Sigma integrated with Failure Mode and Effect Analysis. Results The analysis identified defects, waiting, transportation, and environmental health and safety as dominant wastes. Lead time was reduced from 763.11 minutes to 681.38 minutes through the elimination of non-value-added activities. Process performance showed an average DPMO of 37,519.68 with a sigma level of 3.28, alongside an increase in Process Cycle Efficiency from 59.55% to 66.69%. FMEA results indicated the highest Risk Priority Numbers were associated with non-standard product weight and product clumping caused by operator inconsistency and suboptimal machine performance. Novelty This study presents an integrated application of Lean Six Sigma and FMEA to map waste sources and prioritize failure risks within a pesticide powder production system. Implications The findings provide structured improvement recommendations, including operator training, standardized machine settings, and routine maintenance, offering a data-driven reference for manufacturing process optimization in similar industrial settings. Highlights: Defect-related losses constituted the largest proportion of inefficiencies in the studied manufacturing flow. Quantitative performance metrics demonstrated measurable reductions in processing time and defect opportunity rates. Risk prioritization revealed machine condition and operator consistency as dominant contributors to quality deviation. Keywords: Pesticides, Waste, Lean Six Sigma, FMEA