This Author published in this journals
All Journal Jurnal Mandiri IT
Khusni, Muhammad Wazid
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparison of naïve bayes and KNN for herbal leaf classification Nugroho, Bangkit Indarmawan; Khusni, Muhammad Wazid; Ananda, Pingky Septiana; Gunawan, Gunawan
Jurnal Mandiri IT Vol. 13 No. 1 (2024): July: Computer Science and Field
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/mandiri.v13i1.297

Abstract

This study aims to compare the effectiveness of two classification algorithms, namely Naïve Bayes Classifier and K-Nearest Neighbor (KNN), in classifying herbal leaves. This research design uses a quantitative approach with experimental analysis and model validation. The dataset consisted of images of papaya leaves, pandanus, cat's whiskers, and betel nut taken in different lighting conditions. The methodology includes pre-processing of data by converting images into grayscale, feature extraction using Gray Level Co-occurrence Matrix (GLCM), and application of Naïve Bayes and KNN algorithms. The main results showed that KNN achieved 90.00% accuracy with precision, recall, and F1-score of 88.33% respectively, higher than Naïve Bayes which had 82.50% accuracy, 81.46% precision, 85.83% recall, and 82.27% F1-score. In conclusion, KNN is superior in the classification of herbal leaves to Naïve Bayes, although it requires a longer computational time. Further research is recommended to optimize algorithm parameters and explore the integration of deep learning techniques to improve classification accuracy and efficiency.