Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Penyakit Hepatitis C dengan Menggunakan K-Nearest Neighbor Yusfila, Fathul Qorib; Khotimah, Bain Khusnul; Anamisa, Devie Rosa; Ni’mah, Ana Tsalitsatun
Sains Data Jurnal Studi Matematika dan Teknologi Vol 3, No 1: January - June 2025
Publisher : Sekolah Tinggi Agama Islam Nurul Islam Mojokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52620/sainsdata.v3i1.205

Abstract

Hepatitis merupakan kondisi peradangan pada hati yang disebabkan oleh berbagai jenis virus, baik yang menular maupun tidak menular, dan dapat menimbulkan komplikasi serius hingga kematian. Terdapat lima tipe utama virus hepatitis, yaitu A, B, C, D, dan E. Penelitian ini bertujuan untuk mengklasifikasikan penyakit Hepatitis C menggunakan algoritma K-Nearest Neighbor (KNN) dengan pendekatan penanganan data tidak seimbang melalui teknik Random Oversampling. Dataset yang digunakan adalah HCV dari UCI Machine Learning Repository, yang terdiri dari 615 data dengan 14 fitur dan 5 kategori kelas. Karena data bersifat tidak seimbang, dilakukan peningkatan jumlah data pada kelas minoritas menggunakan Random Oversampling. Proses evaluasi dilakukan dengan membandingkan performa KNN tanpa dan dengan oversampling, serta menentukan nilai K terbaik melalui skenario pengujian menggunakan 5-fold Cross Validation. Hasil menunjukkan bahwa KNN tanpa oversampling menghasilkan akurasi tertinggi sebesar 94% pada nilai K=3, sementara dengan oversampling akurasi meningkat menjadi 96,70% pada nilai K yang sama. Dengan demikian, dapat disimpulkan bahwa penerapan Random Oversampling mampu meningkatkan performa klasifikasi algoritma KNN pada data Hepatitis C yang tidak seimbang.