Claim Missing Document
Check
Articles

Found 16 Documents
Search

Perbandingan Metode Term Weighting terhadap Hasil Klasifikasi Teks pada Dataset Terjemahan Kitab Hadis Ni'mah, Ana Tsalitsatun; Arifin, Agus Zainal
Rekayasa Vol 13, No 2: August 2020
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (434.672 KB) | DOI: 10.21107/rekayasa.v13i2.6412

Abstract

Hadis adalah sumber rujukan agama Islam kedua setelah Al-Qur’an. Teks Hadis saat ini diteliti dalam bidang teknologi untuk dapat ditangkap nilai-nilai yang terkandung di dalamnya secara pegetahuan teknologi. Dengan adanya penelitian terhadap Kitab Hadis, pengambilan informasi dari Hadis tentunya membutuhkan representasi teks ke dalam vektor untuk mengoptimalkan klasifikasi otomatis. Klasifikasi Hadis diperlukan untuk dapat mengelompokkan isi Hadis menjadi beberapa kategori. Ada beberapa kategori dalam Kitab Hadis tertentu yang sama dengan Kitab Hadis lainnya. Ini menunjukkan bahwa ada beberapa dokumen Kitab Hadis tertentu yang memiliki topik yang sama dengan Kitab Hadis lain. Oleh karena itu, diperlukan metode term weighting yang dapat memilih kata mana yang harus memiliki bobot tinggi atau rendah dalam ruang Kitab Hadis untuk optimalisasi hasil klasifikasi dalam Kitab-kitab Hadis. Penelitian ini mengusulkan sebuah perbandingan beberapa metode term weighting, yaitu: Term Frequency Inverse Document Frequency (TF-IDF), Term Frequency Inverse Document Frequency Inverse Class Frequency (TF-IDF-ICF), Term Frequency Inverse Document Frequency Inverse Class Space Density Frequency (TF-IDF-ICSδF), dan Term Frequency Inverse Document Frequency Inverse Class Space Density Frequency Inverse Hadith Space Density Frequency (TF-IDF-ICSδF-IHSδF). Penelitian ini melakukan perbandingan hasil term weighting terhadap dataset Terjemahan 9 Kitab Hadis yang diterapkan pada mesin klasifikasi Naive Bayes dan SVM. 9 Kitab Hadis yang digunakan, yaitu: Sahih Bukhari, Sahih Muslim, Abu Dawud, at-Turmudzi, an-Nasa'i, Ibnu Majah, Ahmad, Malik, dan Darimi. Hasil uji coba menunjukkan bahwa hasil klasifikasi menggunakan metode term weighting TF-IDF-ICSδF-IHSδF mengungguli term weighting lainnya, yaitu mendapatkan Precission sebesar 90%, Recall sebesar 93%, F1-Score sebesar 92%, dan Accuracy sebesar 83%.Comparison of a term weighting method for the text classification in Indonesian hadithHadith is the second source of reference for Islam after the Qur’an. Currently, hadith text is researched in the field of technology for capturing the values of technology knowledge. With the research of the Book of Hadith, retrieval of information from the hadith certainly requires the representation of text into vectors to optimize automatic classification. The classification of the hadith is needed to be able to group the contents of the hadith into several categories. There are several categories in certain Hadiths that are the same as other Hadiths. Shows that there are certain documents of the hadith that have the same topic as other Hadiths. Therefore, a term weighting method is needed that can choose which words should have high or low weights in the Hadith Book space to optimize the classification results in the Hadith Books. This study proposes a comparison of several term weighting methods, namely: Term Frequency Inverse Document Frequency (TF-IDF), Term Frequency Inverse Document Frequency Inverse Class Frequency (TF-IDF-ICF), Term Frequency Inverse Document Frequency Inverse Class Space Density Frequency (TF-IDF-ICSδF) and Term Frequency Inverse Document Frequency Inverse Class Space Density Frequency Inverse Hadith Space Density Frequency (TF-IDF-ICSδF-IHSδF). This research compares the term weighting results to the 9 Hadith Book Translation dataset applied to the Naive Bayes classification engine and SVM. 9 Books of Hadith are used, namely: Sahih Bukhari, Sahih Muslim, Abu Dawud, at-Turmudzi, an-Nasa’i, Ibn Majah, Ahmad, Malik, and Darimi. The trial results show that the classification results using the TF-IDF-ICSδF-IHSδF term weighting method outperformed another term weighting, namely getting a Precession of 90%, Recall of 93%, F1-Score of 92%, and Accuracy of 83%.
Autonomy Stemmer Algorithm for Legal and Illegal Affix Detection use Finite-State Automata Method Ana Tsalitsatun Ni'mah; Dwi Ari Suryaningrum; Agus Zainal Arifin
EPI International Journal of Engineering Vol 2 No 1 (2019): Volume 2 Number 1, February 2019 with Special Issue on Composite Materials & Stru
Publisher : Center of Techonolgy (COT), Engineering Faculty, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25042/epi-ije.022019.09

Abstract

Stemming is the process of separating words from their affixes to get a basic word. Stemming is generally used when preprocessing in text-based applications. Indonesian Stemming has developed research which is divided into two types, namely, stemming without dictionaries and stemming using dictionaries. Stemming without dictionaries has a disadvantage in the results of removal of affixes which are sometimes inappropriate so that it results in over stemming or under stemming, while stemming using dictionaries has a disadvantage during the stemming process which is relatively long and cannot eliminate affixes to compound words. This study proposes a new stemming algorithm without a dictionary that is able to detect legal and illegal affixes in Indonesian using the Finite-State Automata method. The technique used is rule-based Stemmer based on Indonesian language morphology with Regular Expression. Test results were carried out using 118 news documents with 15792 words. The first test results on the autonomy stemmer algorithm obtain the correct word which amounts to 10449 of the total number of words processed, which means getting an average accuracy of 66%. The second test results on the autonomy stemmer algorithm get the results of the average speed of 0.0051 seconds. The third test result is being able to do the elimination of affixes to compound words.
Survei Dampak Penggunaan Integrasi Berkelanjutan dalam Perusahaan Pengembangan Perangkat Lunak Kharisma Monika Dian Pertiwi; Ana Tsalitsatun Ni’mah; Siti Rochimah
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 8 No 2: Mei 2019
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (891.631 KB)

Abstract

Continuous Integration (CI) is a software development technique adopted from the agile method. CI is widely used by software development companies, so there is a need for research to determine the impact of using CI in the software development industry. This study aims to analyze the impact of the use of CI on software and software development companies that are being developed. This research applies the Systematic Literature Review (SLR) research method. This study has two Research Questions, namely RQ, (1) “What is the impact of using Continuous Integration in software development?” (2) “What is the effect of using Continuous Integration on the company?”. The impact of the use of CI was identified by conducting a literature search for CI which was published in 2012 until 2018. Literature search was conducted on the IEEE Xplore and Science Direct. From the search, a total of 6,514 literature regarding CI is found. Then, a screening process is carried out based on inclusion criteria, exclusion criteria, and quality assessment of literature. After screening, 14 literature were selected. The selected literature met the specified criteria and could represent to determine the impact of using CI. Out of the 14 selected literatures, 13 literatures were able to answer the two research questions. Based on the SLRs that have been done, it is shown that the use of CI in software development can have good and bad effects on software and software development companies.
Term Weighting Based Indexing Class and Indexing Short Document for Indonesian Thesis Title Classification Ana Tsalitsatun Ni'mah; Fahmi Syuhada
Journal of Computer Science and Informatics Engineering (J-Cosine) Vol 6 No 2 (2022): December 2022
Publisher : Informatics Engineering Dept., Faculty of Engineering, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jcosine.v6i2.471

Abstract

Document classification nowadays is an easy thing to do because there are the latest methods to get maximum results. Document classification using the term weighting TF-IDF-ICF method has been widely studied. Documents used in this research generally use large documents. If the term weighting TF-IDF method is used in a short text document such as the Thesis Title, the document will not get a perfect score from the classification results. Because in the IDF will calculate the weight of words that always appear to be few, ICF will calculate the weight of words that often appear in the class to be few. While the word should have great weight to be the core of a short text document. Therefore, this study aims to conduct research on word weighting based on class indexation and short document indexation, namely TF-IDF-ICF-IDSF. This study uses a classification comparison Naïve Bayes and SVM. The dataset used is Thesis Title of Informatics Education student at Trunojoyo Madura University. The test results show that the classification results using the TF-IDF-ICF-IDSF term weighting method outperform other term weighting, namely getting 91% Precision, 93% Recall, 86% F1-Score, and 84% Accuracy on SVM.
The Ngoko Javanese Stemmer uses the Enhanced Confix Stripping Stemmer Method Shevia Ilfa Melia; Jamiatus Sholihah; Dianatin Nisak; Intan Sukma Juniaristha; Ana Tsalitsatun Ni'mah
Rekayasa Vol 16, No 1: April 2023
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/rekayasa.v16i1.19308

Abstract

Stemming is vital in text processing. The stemming that is most often encountered is Indonesian and English stemming. This is because more articles are processed in text processing in English and Indonesian. Indonesia has several regional languages, especially local school content, often used in learning. Therefore, research is needed to process Javanese language texts to make it easier for education practitioners, especially in Ngoko Javanese. Ngoko Javanese stemming, which still uses the affix removal stemmers method (rule-based approach) in previous research. Has a problem, namely the lack of success of this method when returning the root words of Ngoko Javanese, so it is necessary to check the Ngoko Javanese dictionary so that the results of the root words obtained are maximized. This study aims to conduct stemmer research on Ngoko Javanese using the Enhanced Confix Stripping (ECS) method. This stemmer is designed to do word splitting according to the Enhanced Confix Stripping algorithm and through checking the dictionary adapted to the Ngoko Javanese language. The results of this study are the ability to extract essential words in Javanese Ngoko to achieve a level of truth in returning root words reaching 97 percent.
Revitalisasi Pembelajaran di Sekolah Menengah Kejuruan: Studi Kasus Penerapan Kurikulum Merdeka pada SMK Al-Asyari Bangkalan Fuaida, Risma; Fahdiyanti, Desi Hela; Maghfiroh, Titin Lailatul; Fitriyah, Maulidah; Laili, Immatul; Ni'mah, Ana Tsalitsatun
Nuris Journal of Education and Islamic Studies Vol. 4 No. 1: January-June 2024
Publisher : STAI Nurul Islam Mojokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52620/jeis.v4i1.58

Abstract

Konsep kurikulum merdeka menginspirasi pendekatan inovatif dalam dunia pendidikan, memberikan kebebasan dan otonomi kepada sekolah, guru, dan siswa untuk menyesuaikan pembelajaran sesuai dengan kebutuhan lokal dan menggalang kerja sama yang erat dalam mewujudkan proses pendidikan yang berdaya saing dan relevan. Pentingnya kerjasama antara guru dan siswa dalam mensukseskan proses belajar mengajar menjadi faktor kunci dalam keberhasilan implementasi Kurikulum Merdeka. Guru perlu menyesuaikan strategi, metode, dan model pembelajaran dengan fase siswa sesuai dengan yang tercantum dalam Kurikulum Merdeka untuk mencapai Capaian Pembelajaran (CP). Penelitian ini bertujuan untuk menganalisis penerapan Kurikulum Merdeka di SMK Al-Asyari Bangkalan. Metode yang digunakan adalah kualitatif dengan jenis penelitian lapangan. Peneliti melakukan observasi, wawancara, dan penyebaran kuesioner kepada siswa. Hasil pengumpulan data menunjukkan bahwa Kurikulum Merdeka yang dikeluarkan oleh Menteri Pendidikan dan Kebudayaan telah berhasil diterapkan dengan baik di SMK Al-Asyari Bangkalan, terutama pada kelas X dan XI, dan memberikan dampak positif bagi siswa. Hasil penelitian ini dapat menjadi sumber informasi bagi guru dan calon pendidik dalam mengimplementasikan Kurikulum Merdeka.
Outcome-Based Education Scoring System Utilizing Modular Object-Oriented Dynamic Learning Environment Ana Tsalitsatun Ni'mah; Firdaus Solihin; Ita Uliyah Sari
Jurnal Pamator : Jurnal Ilmiah Universitas Trunojoyo Vol 16, No 4: October - Desember 2023
Publisher : LPPM Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/pamator.v16i4.23726

Abstract

The dynamic nature of education necessitates inventive approaches to assessment and evaluation. This study concentrates on formulating a Scoring System aligned with Outcome-Based Education (OBE) principles, utilizing the Modular Object-Oriented Dynamic Learning Environment (MOODLE) platform. OBE prioritizes showcasing specific learning outcomes, cultivating a student-centric approach. The proposed system seeks to improve assessments through a flexible framework accommodating diverse learning objectives, employing a modular and object-oriented design. Integration with MOODLE, a widely-used e-learning platform, explores seamless implementation and user-friendly interaction. The Scoring System aids educators in efficiently evaluating student performance against predefined outcomes, fostering transparency and accountability.Key features include customizable assessments, progress tracking, and timely feedback. The study also examines the system's impact on student engagement, motivation, and overall learning outcomes, contributing valuable insights to innovative assessment methodologies in contemporary education. In conclusion, the research introduces a Scoring System harmonizing OBE principles with MOODLE's flexibility, benefiting educators, students, and institutions. The study's outcomes provide valuable implications for educators and technologists aiming to enhance assessments in the evolving education landscape.
Perbandingan Kinerja Algoritma Multinomial Naïve Bayes dan Logistic Regression pada Analisis Sentimen Movie Ratings IMDB Toyibah, Zulfah Binti; Putri, Yiyin Noriyah; Puandini, Puandini; Widodo, Zalsa Maulina; Ni'mah, Ana Tsalitsatun
EDUTIC Vol 10, No 2: Mei 2024
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/edutic.v10i2.28150

Abstract

Salah satu hal yang dapat mempengaruhi seseorang memutuskan untuk menonton sebuah film adalah rating dari film itu sendiri. IMDB merupakan sebuah basis data daring yang berisikan informasi yang berkaitan dengan film, acara televisi, video rumahan, dan permainan video, dan acara internet, termasuk daftar pemeran, biografi kru produksi dan personil, ringkasan alur cerita, trivia, dan ulasan serta penilaian oleh penggemar. Ulasan yang diberikan oleh penggemar dapat berupa ulasan yang bersifat positif maupun negatif dari film yang telah ditonton. Penelitian ini bertujuan untuk mengetahui perbandingan akurasi dari algoritma Multinomial Naïve Bayes dan Logistic Regression dengan melakukan analisis sentiment pada data ulasan film oleh penggemar. Hasil dari pengujian komparasi ditemukan bahwa algoritma Logistic Regression memiliki kinerja yang terbaik dengan nilai akurasi 89.32%, sedangkan algoritma Multinomial Naïve Bayes memiliki nilai akurasi 85.28%. Sehingga dapat disimpulkan bahwa algoritma Logistic Regression memiliki nilai yang lebih baik dibandingkan dengan algoritma Multinomial Naïve Bayes.AbstractOne of the things that can influence a person's decision to watch a film is the rating of the film itself. IMDB is an online database containing information relating to movies, television shows, home videos, video games, and internet shows, including cast lists, biographies of the production crew and personnel, storyline summaries, trivia, and fan reviews and ratings. Reviews given by fans can be in the form of positive or negative reviews of the films that have been watched. This study aims to compare the accuracy of the Multinomial Naïve Bayes and Logistic Regression algorithms by conducting sentiment analysis on film review data by fans. The results of the comparative test found that the Logistic Regression algorithm has the best performance with an accuracy value of 89.32%, while the Multinomial Naïve Bayes algorithm has an accuracy value of 85.28%. So it can be concluded that the Logistic Regression algorithm has a better value than the Multinomial Naïve Bayes algorithm.
Filosofi Lagu Permainan Anak “Lar-Olar Kolarjang” pada Masyarakat Madura Rahman, Bohri; Fadlillah, M.; Setyawan, Arief; Ni'mah, Ana Tsalitsatun
Jurnal Pendidikan Bahasa dan Sastra Indonesia Metalingua Vol 9, No 2 (2024): Metalingua, Edisi Oktober 2024
Publisher : Program Studi Pendidikan Bahasa dan Sastra Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/metalingua.v9i2.27773

Abstract

Permainan anak-anak merupakan tradisi turun-temurun yang dilakukan masyarakat di Indonesia, termasuk di Madura. Salah satu jenis permainan tradisional tersebut ialah yang berbentuk lagu permainan anak-anak. Lagu permainan anak “Lar Olar Kolarjhang” merupakan lagu tradisional yang dimiliki oleh Masyarakat Madura. Lagu permainan anak “Lar-Olar Kolarjang” ini mirip atau memiliki nama lain di daerah-daerah yang lain. Adapun nama-nama tersebut antara lain Wak Wak Gung (Jakarta), Slepdur (Sulawesi Utara), Ancak-Ancak Alis (Jawa Tengah), Sledor (Jawa Timur), Oray-Orayan (Jawa Barat), Curik-Curik (Bali), Toko-Toko Dian (Palopo, Sulawesi Selatan). Lagu ini memiliki nilai filosofis yang dipegang teguh dan diwariskan secara turun temurun dari generasi ke generasi. Adapun nilai-nilai tersebut yakni nilai kebersamaan, nilai penghargaan terhadap diri sendiri dan orang lain, serta nilai kepemimpinan baik bagi diri sendiri maupun orang lain. Nilai-nilai inilah yang menjadikan lagu permainan anak “Lar Olar Kolarjhang” perlu untuk dilestarikan dan diajarkan ke generasi muda agar dijadikan pegangan hidup, baik secara khusus bagi masyarakat Madura maupun masyarakat luas lainnya di Indonesia.
Digital Strategy in Enhancing Brand Equity of Pantai Matahari Tourism Sumenep Ni'mah, Ana Tsalitsatun; Arif, Muchamad; Tahir, Muhlis; Diana, Luluk Mauli; Stefany, Evy Maya
Jurnal Ilmiah Pangabdhi Vol 10, No 2: Oktober 2024
Publisher : LPPM Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/pangabdhi.v10i2.23815

Abstract

This community service article delves into the implementation of a digital strategy aimed at elevating the brand equity of Pantai Matahari Tourism in Sumenep. Pantai Matahari, boasting natural beauty and cultural richness, holds significant potential as a tourist destination. However, its underdeveloped brand and limited exposure hinder the realization of its full tourism potential. Through an in-depth analysis of the tourism landscape in Sumenep, key elements for branding are identified. A meticulously crafted digital marketing strategy is then introduced to enhance the visibility and popularity of Pantai Matahari Tourism in the digital realm. This strategy incorporates social media and content marketing to engage a broader audience. The outcome of this initiative includes the establishment of a robust brand identity for Pantai Matahari Tourism, leading to increased public awareness and visitor interest. Collaborative efforts with local stakeholders and businesses further contribute to strengthened tourism infrastructure and attract new investments. The findings underscore the positive impact of tailored branding and digital marketing strategies on the development of Pantai Matahari Tourism, fostering economic benefits for local communities while preserving natural and cultural treasures. This community service initiative signifies a tangible contribution to sustainable tourism development in Sumenep.