Claim Missing Document
Check
Articles

Found 3 Documents
Search

PEMETAAN TINGKAT KEKRITISAN LAHAN DAN EVALUASI KESESUAIAN TANAMAN UNTUK REHABILITASI LAHAN TERDEGRADASI DALAM PENGELOLAAN SUB-DAS BABUAT KABUPATEN MURUNG RAYA, KALIMANTAN TENGAH Arifin, Arifin; Misnawati, Misnawati; Firdausa, Ayunda Laras; Wahyu, Hyundra Zakiya Putri; Arysandi, Safira Arum
KNOWLEDGE: Jurnal Inovasi Hasil Penelitian dan Pengembangan Vol. 5 No. 2 (2025)
Publisher : Pusat Pengembangan Pendidikan dan Penelitian Indonesia (P4I)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51878/knowledge.v5i2.5775

Abstract

Critical land in a River Basin Area (DAS) can disrupt the hydrological function and production of the surrounding area. Handling is done through rehabilitation by adjusting the type of plant to the characteristics of the land, in order to increase productivity and provide sustainable impacts. This study aims to map critical land in the Babuat Sub-DAS and analyze the suitability of the land for plantation crops in Forest and Land Rehabilitation (RHL) activities. The methods used include overlay, scoring, and weighting according to Perdirjen BPDAS PS No: P.4/V-SET/2013, as well as the matching method between land quality and plant needs based on Balitbangtan (2016) which was adapted from FAO (1976). The results show that the Babuat Sub-DAS has non-critical land covering an area of ??36,990 Ha (19.42%), critical potential 91,880 Ha (48.24%), and slightly to very critical 61,605 Ha (32.34%). Land suitability shows that rubber and rambutan plants are in class S2 (quite suitable) with constraints on water availability (S2wa), candlenut with constraints on temperature and water (S2tc, wa), durian with constraints on temperature, water, and nutrient retention (S2tc, wa, nr), and mahogany with constraints on water and rooting media (S2wa, rc). This information is important to support targeted rehabilitation planning in the Babuat Sub-DAS area. ABSTRAKLahan kritis di suatu Daerah Aliran Sungai (DAS) dapat mengganggu fungsi hidrologis dan produksi wilayah sekitarnya. Penanganan dilakukan melalui rehabilitasi dengan menyesuaikan jenis tanaman terhadap karakteristik lahan, guna meningkatkan produktivitas dan memberikan dampak berkelanjutan. Penelitian ini bertujuan memetakan lahan kritis di Sub DAS Babuat serta menganalisis kesesuaian lahan untuk tanaman perkebunan dalam kegiatan Rehabilitasi Hutan dan Lahan (RHL). Metode yang digunakan meliputi overlay, skoring, dan pembobotan sesuai Perdirjen BPDAS PS No: P.4/V-SET/2013, serta metode matching antara kualitas lahan dan kebutuhan tanaman berdasarkan Balitbangtan (2016) yang diadaptasi dari FAO (1976). Hasil menunjukkan Sub DAS Babuat memiliki lahan tidak kritis seluas 36.990 Ha (19,42%), potensial kritis 91.880 Ha (48,24%), dan agak hingga sangat kritis 61.605 Ha (32,34%). Kesesuaian lahan menunjukkan tanaman karet dan rambutan berada pada kelas S2 (cukup sesuai) dengan kendala ketersediaan air (S2wa), kemiri dengan kendala temperatur dan air (S2tc, wa), durian dengan kendala temperatur, air, dan retensi hara (S2tc, wa, nr), serta mahoni dengan kendala air dan media perakaran (S2wa, rc). Informasi ini penting untuk mendukung perencanaan rehabilitasi yang tepat sasaran di wilayah Sub DAS Babuat.
Land Cover Change Dynamics And Potential Acid Sulfate Soil Formation in Segara Anakan Wahyu, Hyundra Zakiya Putri; Widyatmanti, Wirastuti; Wibowo, Sandy Budi
International Journal for Disaster and Development Interface Vol. 5 No. 2 (2025): October 2025
Publisher : Amcolabora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53824/ijddi.v5i2.111

Abstract

Tropical coastal regions are highly susceptible to acid sulfate soi formation due to ecological and hydrological changes driven by land cover dynamics and sedimentation. This study analyzes land cover changes from 1990 to 2025 and their implications for ASS development in Segara Anakan, Indonesia. Landsat imagery (Landsat 5 and Landsat 8/9 OLI) was classified using Random Forest and Gradient Boosting Tree algorithms within Google Earth Engine. Classification accuracy was assessed using overall accuracy and the Kappa coefficient. Land cover classes included mangrove, nipa palm, paddy fields, aquaculture ponds, settlements, bare land, water bodies, and forest. Results reveal substantial conversion of natural vegetation into paddy fields, bare land, and settlements, particularly in low-lying tidal areas. These changes disrupted ecological conditions that previously sustained organic matter accumulation, low-energy environments, and anaerobic waterlogging—three of the five key factors for ASS formation. Field validation confirmed soil pH < 4 in high-risk areas. This research demonstrates the effectiveness of integrating multi-temporal Landsat imagery with machine learning to detect spatio-temporal land cover dynamics and to identify areas prone to ASS formation, offering valuable insights for adaptive coastal management.
Flood Potential Assessment of the Way Urang Sub-Watershed Based on Peak Discharge Using the Rational Method Zuhrita, Anissa; Wahyu, Hyundra Zakiya Putri; Handayani, Nelly; Milla, Helny Yofin Mega; Safitri, Nabila Zalianti; Murti, Sigit Heru; Sudaryatno
International Journal for Disaster and Development Interface Vol. 5 No. 2 (2025): October 2025
Publisher : Amcolabora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53824/ijddi.v5i2.112

Abstract

Peak discharge is a key indicator for assessing flood potential in a river basin. This study estimates peak discharge in the Way Urang sub-watershed, Pesawaran, Lampung, by integrating remote sensing and Geographic Information Systems (GIS) to derive physical parameters that control surface runoff. The Rational Method was applied, combining the runoff coefficient (C), rainfall intensity (I), and drainage area (A). The runoff coefficient was calculated using the Cook Method, which takes into account soil type, slope gradient, vegetation density, and drainage density. Rainfall intensity was derived from daily records using the Mononobe equation, with time of concentration estimated from the Kirpich formula. Data sources include Sentinel-2 imagery, DEMNAS, rainfall records from 2014 to 2023, and field measurements. The results show a peak discharge of 217.19 m³/s for a basin area of 20.20 km², with a coefficient of variation (C) of 69.20% and an intensity (I) of 55.89 mm/h. High runoff reflects the combined effects of low-infiltration soils, steep slopes, and high annual rainfall. Morphometric measurements yielded a total channel cross-sectional area of 27.91 m² and an estimated bankfull discharge of ~9.53 m³/s, indicating that the channel capacity is far below the peak discharge. This imbalance suggests a high flood potential in downstream areas, particularly in Bunut Village. The findings underscore the importance of integrating spatial data, field surveys, and remote sensing to analyze watershed physical characteristics and to support more effective, spatially informed flood planning and mitigation.