Rahmawati, Fika Dwi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Collaborative Intrusion Detection System with Snort Machine Learning Plugin Priambodo, Dimas Febriyan; Faizi, Achmad Husein Noor; Rahmawati, Fika Dwi; Sunaringtyas, Septia Ulfa; Sidabutar, Jeckson; Yulita, Tiyas
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2018

Abstract

The increasing prevalence of cybercrime and cyber-attacks underscores the imperative need for organizations to implement robust network security measures. Nevertheless, current Intrusion Detection Systems (IDS) often rely on single-sensor or multi-sensor in the same type of IDS, including Host-Based IDS (HIDS) or Network-Based IDS (NIDS), which inherently possess limited detection capabilities. To address this limitation, this research combines NIDS and HIDS components into a collaborative-IDS system, thus expanding the scope of intrusion detection and enhancing the efficacy of the established attack mitigation system. However, the integration of NIDS and HIDS introduces formidable challenges, notably the elevated rates of False Positive and False Negative alerts. To surmount these challenges, the researcher employs machine learning techniques in the form of Snort plugins and comparison methods to heighten the precision of attack detection. The obtained results unequivocally illustrate the effectiveness of this approach. Using a Support Vector Machine for static analysis of the NSL-KDD dataset attains an outstanding 99% detection rate for Denial of Service (DoS) attacks and an impressive 98% detection rate for Probe attacks. Furthermore, in dynamic real-time attack simulations, the machine learning plugins exhibit remarkable proficiency in detecting various types of DoS attacks, concurrently offering more comprehensive identification of SYN Flooding DoS attacks compared to the Snort community rules set. These findings signify a significant advancement in intrusion detection, paving the way for more robust and accurate network security systems in an era of escalating cyber threats.