Claim Missing Document
Check
Articles

Found 1 Documents
Search

Precise Electrocardiogram Signal Analysis Using ResNet, DenseNet, and XceptionNet Models in Autistic Children Yunidar, Yunidar; Melinda, Melinda; Albahri, Albahri; Ramadhani, Hanum Aulia; Dimiati, Herlina; Basir, Nurlida
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 7 No 4 (2025): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v7i4.1044

Abstract

In autistic children, one of the important physiological aspects to be examined is the heart condition, which can be assessed through electrocardiogram (ECG) signal analysis. However, ECG signals in autistic children often contain interference in the form of noise, making the analysis process, both manual and conventional, challenging. Therefore, this study aims to analyze the ECG signals of autistic children using a classification method to distinguish between two main conditions: playing and calm conditions. A deep learning approach employing the Convolutional Neural Network (CNN) architectures was used to obtain accurate results in distinguishing the heart conditions of autistic children. The data used consists of 700 ECG signal data in each class, processed through the filtering, windowing, and augmentation stages to obtain balanced data. Three CNN architectures, ResNet, DenseNet, and XceptionNet, were tested in this study. Although these architectures are originally designed for 2D and 3D image data, modifications were made to adapt the input data structure to perform 1D data calculations. The evaluation results show that the XceptionNet model achieved the best performance, with accuracy, precision, recall, and F1-score of 97,14% each, indicating a good ability in capturing the complex patterns of ECG signals. Meanwhile, the ResNet obtained good results with 96,19% accuracy, while DenseNet performed slightly lower results with 94,76% accuracy and evaluation metrics. Overall, this study demonstrates that a deep CNN architecture based on dense connections can enhance the accuracy of ECG signal classification in autistic children.