Hanif Razka, Muhamad
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Sentimen terhadap Aplikasi PeduliLindungi pada Jejaring Sosial Twitter Menggunakan Algoritma Naïve Bayes dan Seleksi Fitur Particle Swarm Optimization Hanif Razka, Muhamad; Theresiawati, Theresiawati; Chamidah, Nurul
Informatik : Jurnal Ilmu Komputer Vol 19 No 1 (2023): April 2023
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52958/iftk.v19i1.4688

Abstract

Aplikasi PeduliLindungi merupakan sebuah aplikasi resmi dari Kominfo yang bekerjasama dengan beberapa kementerian lainnya. Aplikasi ini bertujuan untuk membantu mencegah penyebaran virus COVID-19 karena selalu terhubung dengan penggunanya berdasarkan lokasi. Penelitian ini menggunakan data opini publik terhadap penggunaan aplikasi PeduliLindungi dari hasil tweets masyarakat menggunakan kata kunci seperti Peduli Lindungi, hastag #PeduliLindungi dan pengguna yang menyebutkan username @PLindungi. Pengambilan data dilakukan pada tanggal 13 Maret hingga 11 April 2022. Dalam penelitian ini memiliki tujuan untuk melakukan proses mengkategorikan sebuah data tweet menjadi sentimen bersifat positif dan negatif dan menggunakan algoritma Naïve Bayes untuk proses klasifikasinya kemudian menerapkan penggunaan seleksi fitur Particle Swarm Optimization untuk selanjutnya masuk ke dalam tahap evaluasi dengan confusion matrix guna melihat perbandingan akurasi penggunaan seleksi fitur bagi algoritma klasifikasi tersebut. Dan dari hasil pengujian menggunakan algoritma klasifikasi Naïve Bayes mendapatkan nilai akurasi sebesar 76.23%, Recall sebesar 76.78%, serta Precission sebesar 79.62%. Sementara penggunaan seleksi fitur Particle Swarm Optimization pada algoritma Naïve Bayes mendapatkan hasil terbaik pada proses iterasi PSO sebanyak 250 kali dengan peningkatan nilai akurasi menjadi 80.19% kemudian nilai recall menjadi 85.71% serta terdapat peningkatan pada precission menjadi 80%.