Kiran, Pasam Prudhvi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Integrity verification of medical images in internet of medical things for smart cities using data hiding scheme Devi, Kilari Jyothsna; Daniel, Ravuri; Prasad, Bode; Ishak, Mohamad Khairi; Sudarsa, Dorababu; Kiran, Pasam Prudhvi
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5770-5781

Abstract

As technology has advanced, the internet of medical things (IoMT) has become incredibly useful. It is used to transmit a wide variety of medical images. Sensitive patient data may be altered during transmission or subject to illegal access. To overcome all of these challenges and preserve the integrity of medical images while transmission over IoMT, a blind region-based data concealing approach called medical image watermarking (MIW) is suggested. The region of interest (ROI) and region of non-interest (RONI) are the two sections that make up the medical image. The aim of the suggested MIW technique is to prevent transmission-related manipulation of medical image ROI. To provide high imperceptibility and resilience, confined integrity verification and recovery bits (CIVRB) bits are embedded in the RONI using hybrid integer wavelet transform–singular value decomposition (IWT-SVD). According to the experimental results, the suggested system is highly imperceptible (average peak signal-to-noise ratio (PSNR)=56dB), robust (average NC=0.99), and exhibits integrity verification accuracy of over 98% against a variety of image processing attacks. In terms of several watermarking properties, the proposed technique performs over state-of-the-art schemes. This method offers a dependable framework for protecting medical images in real-time IoMT applications and is suitable for smart healthcare environments.