Ezhilarasi, G.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Automated defect detection in submersible pump impellers using image classification Somasundaram, Deepa; Pramila, V.; Ezhilarasi, G.; Lakshmi, D.; Kavitha, P.; Kalaivani, R.
Indonesian Journal of Electrical Engineering and Computer Science Vol 40, No 2: November 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v40.i2.pp1158-1166

Abstract

Casting is a crucial manufacturing process used to produce complex metal parts, but it is often plagued by defects such as cracks, porosity, shrinkage, and cold shuts, which can compromise quality and lead to financial losses. Traditional visual inspection methods for detecting these defects are slow and prone to human error, making them inefficient for large-scale production. This project proposes automating the defect detection process using advanced AI-powered non-destructive testing (NDT) techniques. Specifically, convolutional neural networks (CNNs), a deep learning model, are employed for real-time visual inspection of castings. CNNs, trained on high-resolution images, can accurately identify surface defects such as cracks, scratches, and dimensional irregularities, significantly improving inspection speed and accuracy. The performance metrics of the system include defect detection accuracy, false positive and false negative rates, processing time, and scalability for high-volume production environments. By minimizing human intervention, this automated system reduces error rates, enhances product quality, and lowers production costs. Furthermore, the real-time capabilities of CNNs allow for rapid feedback, preventing defective parts from advancing through the production line. Overall, the integration of AI-based vision systems boosts efficiency, sustainability, and profitability in manufacturing, ensuring castings meet customer specifications with minimal errors.