Pencurian ikan merupakan kegiatan yang menyebabkan kerugian sangat besar untuk Indonesia, sementara wilayah perairan Indonesia yang luas membuat kegiatan pengawasan pencurian ikan tersebut menjadi sulit dilakukan. Peraturan internasional yang mewajibkan setiap kapal di atas 300 GT untuk mengirimkan data menggunakan AIS menjadi kesempatan untuk mendeteksi kapal-kapal yang melakukan pencurian ikan. Kemampuan Indonesia untuk mendeteksi sinyal AIS dari satelit LAPAN-A2/Orari memperbesar kesempatan tersebut. Penelitian ini bertujuan membangun bagian dari sistem peringatan dini aktivitas pencurian ikan, berdasarkan data AIS yang diterima oleh sensor di garis pantai dan di satelit. Proses pendeteksian dilakukan dengan menganalisa data perjalanan dari sistem AIS. Jenis-jenis pencurian ikan yang dapat dideteksi oleh algoritma ini adalah trans-shipment, penggunaan pukat harimau, pelanggaran zona teritorial, pelanggaran tidak melapor, pelanggaran wilayah penangkapan, dan pelanggaran tidak mengaktifkan pemancar sinyal AIS. Algoritma yang digunakan adalah metode Ray Casting, untuk menentukan suatu kapal berada dalam satu wilayah atau tidak. Perbaikan performa algoritma ini dilakukan dengan melakukan proses multithreading menggunakan kode Python. Algoritma diuji dengan data AIS dari LAPAN-A2/Orari dan data simulasi. Hasil menunjukkan bahwa algoritma yang dirancang untuk sistem analisis peringatan dini pencurian ikan (illegal fishing) dengan data AIS berhasil mendeteksi 6 jenis pelanggaran sesuai ketentuan Kementerian Kelautan dan Perikanan (KKP) Republik Indonesia yang telah disebutkan di atas dengan menggunakan data simulasi.