Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementation of IoT for temperature monitoring system on combustion furnace Prayoga, Noval; Risfendra
Journal of Industrial Automation and Electrical Engineering Vol. 2 No. 2 (2025): Vol 2 No 2 (2025): December 2025
Publisher : Department of Electrical Engineering Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jiaee.v2.i2pp91-97

Abstract

Combustion equipment requires precise and continuous temperature monitoring to ensure process safety and efficiency. Manual monitoring often causes delays and a lack of real-time feedback, which increases the risk of thermal instability. To address this issue, this study proposes an IoT-based temperature monitoring system that uses affordable and open-source components. The system uses an ESP32 microcontroller and a type K thermocouple for temperature measurement. Temperature data is transmitted via Wi-Fi to a PHP-based web server, stored in a MySQL database, and displayed in real-time through a remotely accessible web interface. The development method involved system design, sensor integration, microcontroller programming, and testing. Flowcharts and block diagrams were created to define the system's behavior. The system was evaluated through sensor accuracy testing, data verification, and latency measurements. The results showed that the sensor had an error margin of less than 5% compared to a gun thermometer. Data recorded by the ESP32 matches 100% with database and web outputs. Average data transmission delay is approximately 3 seconds, indicating responsive real-time monitoring. This system demonstrates a reliable, scalable, and cost-effective solution for industrial furnace monitoring, enhancing operational safety through IoT-based automation.
Automatic Pre-Starting of Oil-Waste Fueled Stove Based on Microcontroller and HMI Risfendra, Risfendra; Pulungan, Ali Basrah; Parmanoan, Durain; Prayoga, Noval
invotek Vol 25 No 2 (2025): INVOTEK: Jurnal Inovasi Vokasional dan Teknologi
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/invotek.v25i2.1271

Abstract

The utilization of waste oil as an alternative cooking fuel is limited by its complex ignition process, which requires preheating to reduce viscosity and ensure stable combustion. Conventional methods, such as burning tissue paper, are unsafe, inefficient, and impractical, hindering broader adoption. This study presents the development of an automatic preheating system for waste oil stoves using an ESP32 microcontroller and HMI with TFT LCD display. The system integrates a thermocouple sensor for accurate real-time temperature monitoring and an automatic cut-off mechanism to halt fuel supply during ignition failure, and includes a buzzer for audible alarms during safety shutdowns to improving operational safety. The ignition sequence employs LPG as a preheater before automatically switching to waste oil at the optimal temperature, with programmed control of the blower, igniter, and valves. Experimental results showed thermocouple measurement accuracy with an average error of 4% and high reliability in fuel transition, except at low initial temperatures (31°C and 42°C) where insufficient heating time resulted in high viscosity and transition failure. The safety system effectively prevented hazards, while the HMI provided precise control and monitoring of actuators and combustion conditions. Overall, the proposed system enhances the safety, reliability, and practicality of waste oil stoves and demonstrates potential for industry innovation and renewable energy applications. Nevertheless, the system still requires LPG for the preheating stage and continuous electrical power, which can reduce effectiveness and make it harder to use in mobile or areas without electricity.