Raihan, Habib Aulia
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Model Klasifikasi Emosi Berbasis Teks dengan Algoritma Decision Tree dan Support Vector Machine Raihan, Habib Aulia; Yuliansyah, Herman; Murinto
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol. 7 No. 2 (2025): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Text-based communication has become a key means of interaction across various sectors. Previous studies have applied supervised learning algorithms to emotion classification in text. These studies used different datasets, but this diversity also introduced a risk of overfitting in text-based emotion classification models. Consequently, the use of cross-validation and hyperparameter optimization is required to ensure the model’s generalization ability. The aim of this research is to compare the performance of two supervised learning algorithms—Decision Tree (DT) and Support Vector Machine (SVM)—for emotion classification on an English-language text dataset of 16,000 labeled entries (anger, fear, joy, love, sadness, surprise) sourced from Kaggle. The dataset undergoes cleaning, tokenization, stopword removal, and lemmatization, after which features are extracted using TF-IDF. Both algorithms are evaluated with K-Fold and Stratified K-Fold cross-validation, then used to compute metrics of accuracy, precision, recall, and F1-score. Classification results show that the hyperparameter-tuned DT achieved an average accuracy of 88%, while the hyperparameter-tuned SVM achieved 89%. Meanwhile, Stratified K-Fold cross-validation yielded an accuracy variance of just 0.02% for DT and 0.15% for SVM. Therefore, it can be concluded that Stratified K-Fold performs better than standard K-Fold on imbalanced datasets, and that hyperparameter-tuned SVM outperforms hyperparameter-tuned DT.