Sundari, Agus
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Named Entity Recognition for Uncovering Clinical and Emotional Entities from Breast Cancer Patient Interviews Alias, Norma; Sundari, Agus
Knowbase : International Journal of Knowledge in Database Vol. 5 No. 1 (2025): June 2025
Publisher : Universitas Islam Negeri Sjech M. Djamil Djambek Bukittinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30983/knowbase.v5i1.10192

Abstract

This study aims to develop a Named Entity Recognition (NER) system capable of identifying clinical and emotional entities within interview transcripts of breast cancer patients. The corpus was manually annotated using the BIO scheme across seven main entity categories: Social Support (Dukungan Sosial), Medical Actions (Tindakan Medis), Diagnosis, Negative Emotions (Emosi Negatif), Positive Emotions (Emosi Positif), Symptoms (Gejala), and Spiritual. The annotation process was followed by the implementation of a rule-based method supported by entity dictionaries and word normalization, and the model was evaluated using precision, recall, and F1-score metrics. The analysis results revealed that Dukungan Sosial was the most dominant entity with 347 occurrences, followed by Tindakan Medis and Diagnosis. The rule-based NER model achieved an F1-score of 0.50 for the Diagnosis entity, although its performance on emotional and social entities remained low due to data imbalance. These findings highlight the importance of integrating clinical and emotional aspects in natural language processing to gain a more comprehensive understanding of patient narratives. The proposed approach has potential applications in healthcare text mining for detecting emotional experiences and medical contexts, and it can be further enhanced through the integration of transformer-based models such as IndoBERT to improve entity recognition accuracy.