Claim Missing Document
Check
Articles

Found 2 Documents
Search

Innovations in Bioremediation: Harnessing Microbial Power to Clean Up Pollution Xiang, Yang; Wei, Sun; Ewane, Elvis
Research of Scientia Naturalis Vol. 2 No. 2 (2025)
Publisher : Yayasan Adra Karima Hubbi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70177/scientia.v2i2.2008

Abstract

Pollution poses a significant threat to ecosystems and human health, prompting the need for effective remediation strategies. Bioremediation, which utilizes microorganisms to degrade environmental pollutants, has emerged as a promising approach to address this challenge. This study aims to explore recent advancements in bioremediation technologies, focusing on the role of specific microbial communities in the degradation of various pollutants, including heavy metals, hydrocarbons, and pesticides. The research seeks to identify effective microbial strategies and their applications in real-world scenarios. A comprehensive literature review was conducted, analyzing recent studies on microbial bioremediation techniques. Laboratory experiments were performed to evaluate the degradation rates of selected pollutants by specific microbial strains. Case studies of successful bioremediation projects were also included to illustrate practical applications. Findings indicate that innovative microbial techniques, such as genetically engineered strains and bioaugmentation, significantly enhance the degradation of pollutants. Successful case studies demonstrated substantial reductions in pollutant concentrations, showcasing the efficacy of microbial bioremediation in various environments. This research highlights the potential of harnessing microbial power for effective pollution cleanup.
SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) USING SILVER NANOSTARS FOR THE MULTIPLEXED DETECTION OF DISEASE BIOMARKERS IN SERUM Tchuente, Nadine; Ngassa, Michel; Ewane, Elvis
Journal of Biomedical and Techno Nanomaterials Vol. 2 No. 6 (2025)
Publisher : Yayasan Adra Karima Hubbi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70177/jbtn.v2i6.2980

Abstract

Early and accurate detection of disease biomarkers in serum is essential for clinical diagnosis, prognosis, and precision medicine, yet conventional immunoassays often rely on labeled reagents, multiple processing steps, and limited multiplexing capability. Surface-Enhanced Raman Spectroscopy (SERS) offers label-free molecular specificity, but its clinical application has been constrained by reproducibility and sensitivity challenges in complex biological matrices. This study aims to develop a silver nanostar–based SERS platform for the multiplexed detection of disease biomarkers directly in serum. An experimental nanobiosensing approach was employed, involving the synthesis of shape-controlled silver nanostars, surface functionalization with biomolecular recognition elements, physicochemical characterization, and SERS-based analytical evaluation in serum samples. The results demonstrate that silver nanostars generate strong and stable Raman enhancement, enabling clear discrimination of multiple biomarker signatures at low nanomolar concentrations. High linearity, acceptable reproducibility, and minimal matrix interference were achieved under multiplexed conditions. Comparative analysis confirmed superior performance of nanostars relative to conventional spherical nanoparticles. In conclusion, silver nanostar–based SERS provides a robust, label-free, and highly sensitive platform for multiplexed serum biomarker detection. This approach holds significant potential for advancing clinical diagnostics and translational bioanalytical applications.