Efi Mukaromah
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

DETEKSI PENYAKIT DAUN TANAMAN STROBERI MENGGUNAKAN YOLOV8 PENDEKATAN BERBASIS DEEP LEARNING DI TAWANGMANGU Efi Mukaromah; Fauzan Masykur; Adi Fajaryanto Cobantoro
MEKAR : Journal Information System and Computer Application Vol. 1 No. 1 (2025): AGUSTUS
Publisher : PT Mekar Research and Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65475/9mr3se03

Abstract

Deteksi dini penyakit pada daun stroberi merupakan langkah strategis dalam upaya peningkatan produktivitas pertanian, khususnya di kawasan dataran tinggi seperti Tawangmangu. Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi performa model YOLOv8 untuk mendeteksi lima kelas utama kondisi daun stroberi secara real-time. Dataset lokal dikumpulkan langsung dari kebun stroberi di Tawangmangu dan dianotasi menggunakan format YOLO. Proses pelatihan mencakup augmentasi data dan pembagian dataset, kemudian dievaluasi menggunakan metrik akurasi, presisi, recall, F1-score, dan mean Average Precision (mAP). Pengujian model di Google Colab menunjukkan performa tinggi dengan nilai evaluasi mAP@0.5 sebesar 99.2% dan mAP@0.5:0.95 sebesar 94.5%. Pengujian lapangan menerapkan implementasi website STROBIKA menunjukkan akurasi rata-rata sebesar 84,6%, dan mampu mengidentifikasi tiga penyakit utama daun stroberi (Leaf Blight, Leaf Spot, dan Tipburn) secara cepat dan akurat. Meskipun terdapat tantangan dalam mengklasifikasikan daun sehat dan objek non-stroberi, sistem ini menunjukkan potensi tinggi untuk diterapkan dalam pertanian berbasis deep learning di dunia nyata.