Adi Fajaryanto Cobantoro
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Implementasi Sistem Administrasi Sekolah Berbasis ICT Adi Fajaryanto Cobantoro; Yovi Litanianda; Ellisia Kumalasari
JPMB : Jurnal Pemberdayaan Masyarakat Berkarakter Vol 2 No 2 (2019): Agustus-Desember
Publisher : Pusat Penelitian dan Pengembangan Rekarta Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36765/jpmb.v2i2.11

Abstract

Abstrak: Tujuan kegiatan pengabdian ini adalah untuk: (1) mewujudkan rancangan desain aplikasi sekolah berbasis web dengan memanfaatkan desain konseptiual dan interface; (2) membangun aplikasi perangkat lunak sekolah berbasis web, yang akan membantu sekolah dalam hal surat menyurat di lingkungan SDN 1 Tahunan. Hasil akhir dari kegiatan pengabdian masyarakat ini adalah: (1) terciptanya suatu model desain konseptual dengan menggunakan Diagram Arus Data (DAD); (2) terbangunnya suatu sistem administrasi sekolah berbasis web, dengan menggunakan database mysql dengan bahasa pemrogram web, sehingga akan memudahkan komunikasi sekolah dalam mengakses informasiAbstarct: The objectives of community service activities are to: (1) build a web-based school information system architecture using conceptual and interface design; (2) build a web-based school information system, which will assist schools in terms of school data reporting. The final results of this community service activity are: (1) the creation of a conceptual design model using Data Flow Diagrams (DAD); (2) the development of a web-based school information system, using the MySQL database with a web programming language, so that it will facilitate school communication in accessing information and policy making for the principal.
RANCANG BANGUN PURWARUPA APLIKASI ELECTRONIC POINT OF SALES (EPOSAL) BERBASIS WEB PADA MINA ALUMUNIUM Adi Fajaryanto Cobantoro
Network Engineering Research Operation Vol 3, No 2 (2017): NERO
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (901.1 KB) | DOI: 10.21107/nero.v3i2.82

Abstract

ANALISA QoS (QUALITY OF SERVICE) PADA JARINGAN RT-RW NET DENGAN KENDALI RASPBERRY PI Adi Fajaryanto Cobantoro
Network Engineering Research Operation Vol 4, No 1 (2018): NERO
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (314.694 KB) | DOI: 10.21107/nero.v4i1.109

Abstract

DETEKSI PENYAKIT DAUN TANAMAN STROBERI MENGGUNAKAN YOLOV8 PENDEKATAN BERBASIS DEEP LEARNING DI TAWANGMANGU Efi Mukaromah; Fauzan Masykur; Adi Fajaryanto Cobantoro
MEKAR : Journal Information System and Computer Application Vol. 1 No. 1 (2025): AGUSTUS
Publisher : PT Mekar Research and Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65475/9mr3se03

Abstract

Deteksi dini penyakit pada daun stroberi merupakan langkah strategis dalam upaya peningkatan produktivitas pertanian, khususnya di kawasan dataran tinggi seperti Tawangmangu. Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi performa model YOLOv8 untuk mendeteksi lima kelas utama kondisi daun stroberi secara real-time. Dataset lokal dikumpulkan langsung dari kebun stroberi di Tawangmangu dan dianotasi menggunakan format YOLO. Proses pelatihan mencakup augmentasi data dan pembagian dataset, kemudian dievaluasi menggunakan metrik akurasi, presisi, recall, F1-score, dan mean Average Precision (mAP). Pengujian model di Google Colab menunjukkan performa tinggi dengan nilai evaluasi mAP@0.5 sebesar 99.2% dan mAP@0.5:0.95 sebesar 94.5%. Pengujian lapangan menerapkan implementasi website STROBIKA menunjukkan akurasi rata-rata sebesar 84,6%, dan mampu mengidentifikasi tiga penyakit utama daun stroberi (Leaf Blight, Leaf Spot, dan Tipburn) secara cepat dan akurat. Meskipun terdapat tantangan dalam mengklasifikasikan daun sehat dan objek non-stroberi, sistem ini menunjukkan potensi tinggi untuk diterapkan dalam pertanian berbasis deep learning di dunia nyata.