Dhika Malita Puspita
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

IMPLEMENTASI ALGORITMA FP-GROWTH UNTUK REKOMENDASI PRODUK DI TOKO LM MART Happy Dewi Ariyantini; Dhika Malita Puspita; Andri Triyono
Julia: Jurnal Ilmu Komputer An Nuur Vol 4 No 1 (2024): Julia Jurnal
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v4i1.4

Abstract

LM Mart merupakan salah satu usaha toko BumDesa yang berlokasi di Jl Raya PurwodadiSemarang Km.13 kecamatan Godong Kabupaten Grobogan. Produk yang dijual meliputi berbagai bahan pangan pokok (sembilan bahan pokok) untuk kebutuhan masyarakat umum. Data disimpan dalam database toko LM Mart. Salah satunya adalah memperbanyak data transaksi. Dengan semakin meningkatnya volume data di LM Mart, fungsi analis yang menganalisis data secara manual harus digantikan dengan aplikasi berbasis komputer. Permasalahan yang ada pada Toko LM Mart adalah pedagang kurang mempunyai kemampuan dalam mengamati keinginan dan kebutuhan konsumen yang tentunya akan berdampak pada peningkatan penjualan produk. Selain itu data transaksi penjualan jika diolah dapat menghasilkan informasi bermanfaat yang dapat menjadi strategi penjualan untuk meningkatkan pemasaran. Algoritma FP-Growth akan digunakan untuk pendekatan asosiasi pada penelitian ini. Algoritma FP-Growth merupakan pengembangan dari algoritma apriori, memperbaiki kekurangan dari algoritma apriori. Untuk mendapatkan kumpulan item yang sering, algoritma apriori harus menghasilkan kandidat. Dari hasil penelitian perhitungan menggunakan RapidMiner dengan nilai Support sebesar 30% dan nilai Confidance sebesar 80% dengan data transaksi sebanyak 800 record menghasilkan 36 rule. 
ANALISIS SENTIMEN PADA TWITTER TENTANG ISU PERILAKU ANTISOSIAL DENGAN ALGORITMA NAÏVE BAYES Retika Nur Fadila; Andri Triyono; Dhika Malita Puspita
Julia: Jurnal Ilmu Komputer An Nuur Vol 4 No 1 (2024): Julia Jurnal
Publisher : LPPM Universitas An Nuur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35720/julia.v4i1.5

Abstract

In 2023, around 78.19% of the 275.77% or 215.63 million Indonesian population will be connected to the internet, with positive impacts such as fast communication, entertainment and new knowledge. The internet makes non-cash transactions easier and has negative impacts such as addiction and antisocial behavior such as indifference to people around you. Teenagers often access social media, especially Twitter, to express opinions and vent both positive and negative. Sentiment analysis is used to determine opinions about antisocial behavior on Twitter by using text mining techniques to analyze teenagers' opinions. Naive Bayes and SVM algorithms are used in sentiment analysis on the Twitter dataset to analyze antisocial behavior. Actions to evaluate the Naive Bayes algorithm in assessing antisocial behavior sentiments had the best accuracy results of 59.71% with k=7 without n-grams. The Naïve Bayes algorithm with k=5 and n-gram n=2 has the best precision of 33.76% and the best recall of 33.45%. Future research can try to use other classification algorithms such as KNN, SVM, etc. To find the best accuracy of the antisocial behavior dataset. 
Expert System For Corn Plant Disease Diagnosis Using Hybrid Fuzzy Tsukamoto And Naive Bayes Method Kartika Imam Santoso; Eko Supriyadi; Andri Triyono; Dhika Malita Puspita
JIEET (Journal of Information Engineering and Educational Technology) Vol. 9 No. 2 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jieet.v9n2.p141-155

Abstract

Corn is a strategic food commodity in Indonesia, with production of 22.44 million tons in 2023. However, disease attacks can cause productivity declines of up to 30-80%, mainly from downy mildew, leaf rust, and leaf spot. The limited number of pathology experts in the field leads to delayed diagnosis, resulting in significant economic losses for farmers. This research aims to develop an expert system for diagnosing corn plant diseases using a hybrid Fuzzy Tsukamoto and Naive Bayes method to enhance diagnosis accuracy, taking into account uncertainty in symptom severity levels. The system was developed using Durkin's Expert System Development Life Cycle (ESDLC), which consists of six phases. A knowledge base was built from SINTA and Scopus-indexed literature, identifying five diseases and 17 symptoms. The fuzzy Tsukamoto method was employed for the fuzzification of symptom severity, utilizing three membership functions (intensity, coverage, and severity), after which Naive Bayes calculated the posterior probability. The hybrid score was calculated with 40% Fuzzy and 60% Bayes weights. The system was successfully developed with an interactive web interface. Accuracy testing using 30 validation cases yielded an accuracy of 86.67%, with 85% sensitivity and 88% specificity. Expert testing by three plant pathology experts gave excellent ratings (average 4.6/5.0) for diagnosis accuracy, knowledge base completeness, and usability aspects. The hybrid Fuzzy Tsukamoto and Naive Bayes method is effective for diagnosing corn plant diseases, achieving 86.67% accuracy, which is 6.67% higher than the Certainty Factor method and 11.67% higher than the single Naive Bayes method. This system can help farmers perform early diagnosis and reduce dependence on experts.