Papaya is a tropical fruit with high nutritional content and significant health benefits. Nutritional components such as sugars, vitamin C, and fibre are strongly influenced by ripeness level. Identifying these nutrients usually requires laboratory tests that are time-consuming and rely on sophisticated equipment. Previous studies have focused on classifying ripeness levels, yet none have specifically addressed the classification of nutritional content. This study proposes a classification system for papaya nutrition based on ripeness using digital image processing and artificial neural networks (ANN). The method consists of six stages: image acquisition, preprocessing, segmentation, morphology, feature extraction, and classification with a trained ANN model. Experiments were conducted to evaluate feature combinations, including colour and texture features. The combination of LAB colour features and texture features-contrast, correlation, energy, and homogeneity-produced the best results. Testing on 75 images achieved an average precision of 97.22%, recall of 96.67%, F1-Score of 96.80%, and accuracy of 97.33%, with an average computation time of 0.02 seconds per image. These findings indicate that the proposed method provides fast and highly accurate classification of papaya’s nutritional content, offering a practical alternative to laboratory testing. Nevertheless, the study is limited by the relatively small dataset and controlled acquisition environment. Future research should extend the dataset, incorporate deep learning approaches, and validate performance under real-world conditions to enhance robustness and generalization