Claim Missing Document
Check
Articles

Found 1 Documents
Search

Impementasi Deep Learning Berbasis YOLOv5 Untuk Identifikasi Kucing Individu pada Pet Feeder Manna, Muhammad Rayyan Aqiilah; Kallista, Meta; Fikri, Rifqi Muhammad
eProceedings of Engineering Vol. 12 No. 5 (2025): Oktober 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak — Penelitian ini mengembangkan dan mengimplementasikan model deep learning pada sistem Smart Pet Feeder untuk mengenali kucing peliharaan individu berdasarkan foto yang diunggah pengguna melalui aplikasi. Teknologi You Only Look Once (YOLO) dipilih karena memiliki kecepatan deteksi tinggi dan akurasi yang memadai untuk pengenalan secara real-time. Dataset dibuat secara khusus dari foto-foto kucing milik pengguna dengan berbagai sudut dan kondisi pencahayaan guna meningkatkan kemampuan generalisasi model. Proses pelatihan dilakukan dengan pengaturan hyperparameter yang divariasikan, kemudian dievaluasi menggunakan metrik mean Average Precision (mAP) dan confusion matrix untuk mengukur performa prediksi. Hasil pengujian menunjukkan model mampu mengenali kucing dengan akurasi tinggi pada kondisi pencahayaan terang, namun mengalami penurunan performa pada kondisi minim cahaya. Tingkat keakurasian model pada alat sangat bergantung pada kualitas, sudut, dan pencahayaan foto yang diunggah oleh pengguna. Integrasi model ke dalam Smart Pet Feeder memungkinkan sistem mengatur akses makan hanya untuk kucing yang terdaftar, sehingga meningkatkan keamanan, mengurangi risiko makanan diakses kucing lain, dan membantu pemilik memantau aktivitas makan hewan peliharaan secara efektif. Kata kunci— computer vision, deep learning, deteksi realtime, identifikasi kucing, smart pet feeder, YOLO