Claim Missing Document
Check
Articles

Found 1 Documents
Search

Sistem Pendeteksi Fibrilasi Atrium Berbasis Convolutional Neural Network (CNN) Menggunakan EKG Portable Angela, Fallerina Ribka; Estananto; Murti, Muhammad Ary
eProceedings of Engineering Vol. 12 No. 5 (2025): Oktober 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Fibrilasi atrium merupakan salah satu jenis aritmia yang ditandai dengan aktivitas listrik jantung yang cepat dan tidak teratur, serta berpotensi meningkatkan risiko stroke dan gagal jantung jika tidak terdeteksi secara dini. Penelitian ini bertujuan untuk merancang dan mengembangkan sistem pendeteksi fibrilasi atrium berbasis Convolutional Neural Network (CNN) yang terintegrasi dengan perangkat EKG portabel. Sistem ini menggunakan tiga elektroda untuk merekam sinyal listrik jantung, yang kemudian dikirimkan ke aplikasi mobile melalui mikrokontroler ESP32. Data sinyal EKG dan fitur RR interval yang diterima akan diproses menggunakan model CNN untuk mengklasifikasikan kondisi jantung sebagai “normal” atau “fibrilasi atrium”. Model CNN yang dikembangkan berhasil mencapai akurasi sebesar 99,48% dan F1-Score sebesar 97,80%, menunjukkan performa klasifikasi yang sangat baik. Aplikasi mobile juga dirancang untuk menampilkan sinyal EKG, nilai detak jantung (BPM), dan hasil klasifikasi secara real-time. Hasil penelitian menunjukkan bahwa sistem ini mampu memberikan solusi yang efektif dan efisien dalam melakukan pemantauan jantung secara mandiri dan deteksi dini fibrilasi atrium. Kata kunci— fibrilasi atrium, sinyal EKG, CNN, ESP32, perangkat portabel