Claim Missing Document
Check
Articles

Found 1 Documents
Search

Fault diagnosis for inverter open circuit faults using DC-link signal and random forest-based technique Vu, Hoang-Giang; Nguyen, Dang Toan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 4: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i4.pp2178-2185

Abstract

Three-phase voltage source inverters based on insulated-gate bipolar transistors (IGBTs) are widely used in various industrial applications. Faults in IGBTs significantly affect the performance of the inverter and entire system. Robust and accurate fault detection are the key requirements of fault diagnosis methods. This paper explores a method for diagnosing power switch open circuit faults of a voltage source inverter based on machine learning algorithms. The diagnosis is performed in two steps, firstly the fault is detected by applying the Random Forest classifier algorithm with the DC-link signal. Next, the fault switch location is performed by additionally using the inverter output AC current signals. The diagnostic results based on simulation data show that the fault can be detected with maximum accuracy. Meanwhile, the accuracy in locating the fault switch is also significantly improved with the additional use of current signals measured at the DC-link. Potential application of electromagnetic field signal is also highlighted for the practical implementation of fault diagnosis.