International Journal of Power Electronics and Drive Systems (IJPEDS)
Vol 16, No 4: December 2025

Fault diagnosis for inverter open circuit faults using DC-link signal and random forest-based technique

Vu, Hoang-Giang (Unknown)
Nguyen, Dang Toan (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Three-phase voltage source inverters based on insulated-gate bipolar transistors (IGBTs) are widely used in various industrial applications. Faults in IGBTs significantly affect the performance of the inverter and entire system. Robust and accurate fault detection are the key requirements of fault diagnosis methods. This paper explores a method for diagnosing power switch open circuit faults of a voltage source inverter based on machine learning algorithms. The diagnosis is performed in two steps, firstly the fault is detected by applying the Random Forest classifier algorithm with the DC-link signal. Next, the fault switch location is performed by additionally using the inverter output AC current signals. The diagnostic results based on simulation data show that the fault can be detected with maximum accuracy. Meanwhile, the accuracy in locating the fault switch is also significantly improved with the additional use of current signals measured at the DC-link. Potential application of electromagnetic field signal is also highlighted for the practical implementation of fault diagnosis.

Copyrights © 2025






Journal Info

Abbrev

IJPEDS

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. ...