YASUHIRO SUGIMORI
Unknown Affiliation

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

VERTICAL DISTRIBUTION OF CHLOROPHYLL-A BASED ON NEURAL NETWORK TAKAHIRO OSAWA; CHAO FANG ZHAO; NUARSA I WAYAN; I KETUT SWARDIKA; YASUHIRO SUGIMORI
International Journal of Remote Sensing and Earth Sciences Vol. 2 (2005)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2005.v2.a1353

Abstract

An algorithm of estimating Vertical distribution of Chlorophyll-a (Chl-a) was evaluated based on Artificial Neural Networks (ANN) method in Hokkaido field in the northwest of Pacific Ocean. The algorithm applied to the data of SeaWiFS on OrbView-2 and AVHRR on NOAA off Hokkaido, has been applied on September 24, 1998 and September 28, 2001. Ocean color sensor provides the information of the photosynthetic pigment concentration for the upper 22% of the euphotic zone. In order to model a primary production in the water column derived from satellite, it is important to obtain the vertical profile of Chl-a distribution, because the maximum value of Chl-a concentration used to lie in the subsurface region. A shifted Gaussian model has been proposed to describe the variation of the chlorophyll-a (Chl-a) profile which consists of four parameters, i.e. background biomass (B0), maximum depth of Chl-a (zm), total biomass in the peak (h), and a measurement of the thickness or vertical scale of the peak (cr). However, these parameters are not easy to be determined directly from satellite data. Therefore, in the present study, an ANN methodology is used. Using in-situ data from 1974 to 1994 around Japan Islands, the above four parameters are calculated to derive the Chl-a concentration, sea surface temperature, mixed layer depth, latitude, longitude, and Julian days. The total of 6983 profiles of Chl-a and temperature are used for ANN. The correlation coefficients of these parameters are 0.79 (B0), 0.73 (h), 0.76 (cr) and 0.79 (zm) respectively. A site called A-linc off Hokkaido is used to evaluate Chl-a concentration in each depth. After comparing with in-situ data and ANN model, the results show good agreement relatively. Therefore, the ANN method is applicable and available tool to estimate primary production and fish resources from the space.
DEVELOPMENT OF THE NEW ALGORITHM FOR MANGROVE CLASSIFICATION Nuarsa I Wayan; Sandi Adnyana I Wayan; Yasuhiro Sugimori; Susumu Kanno; Fumihiko Nishio
International Journal of Remote Sensing and Earth Sciences Vol. 2 (2005)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2005.v2.a1358

Abstract

The objective of the study is to develop the algorithm for mangrove classification and density. Regression and correlation analysis was used to perform the equation. CE1 = (0.663*Band 3) + (0.l55 *Band 4) - (l.4*Band 5) + 0.995 And CE2 = 36 * Band 4 + 6*Band 5 + Band 3 were two formula that have been used to classify the mangrove. The object will be classified as mangrove when the value of CE1 is between -31.439 and 0.888, and value of CE2 is greater than or equal to 2000. On the other hand, density of the mangrove was expressed as DE = (2 * Band 4)/(Band 1+Band 3). Mangrove classification result in this study was similar to those of the existing methods. Statistical approach in this study generally gives the higher result tendency than other methods.
SPECTRAL CHARACTERISTIZATION OF RICE FIELD USING MULTITEMPORAL LANDSAT ETM+ DATA NUARSA I WAYAN; SUSUMU KANNO; YASUHIRO SUGIMORI; FUMIHIKO NISHIO
International Journal of Remote Sensing and Earth Sciences Vol. 2 (2005)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2005.v2.a1359

Abstract

The preliminary study using Landsat ETM+ to estimate the rice production in Regency of Tabanan, Bali Province was conducted. The objectives of this study were to know spectral characteristic of rice plant in three importance growth periods of rice, and to develop a model to identify the distribution of rice. Landsat ETM+ in two acquisition dates (March 21st, 2003 and May 24*, 2003) were used in this study. Characteristics of rice were analyzed using radiance value of Landsat ETM+ obtained from converting digital number of Landsat data. Multi-variable linear regression analysis was developed to classify the rice in its growth period. The result showed that the rice plant has different reflectance in seedling-development period, ear differentiation period and maturation period. It isexpressed by the radiance value of Landsat ETM+. However, spectral characteristic of rice in each band of Landsat ETM+ is similar to the green vegetations in general, except in blueband (Bl). Based on statistical analysis, the classification of rice in each its growth period can be classified.
ESTIMATION OF FISHERY RESOURCES BY M-F GIS USING SATELLITE DATA AND ITS APPLICATION TO TAC FOR SUSTAINABLE FISHERY PRODUCTION Yasuhiro Sugimori; Takashi Moriyama; Bambang Tejasukmana; Indroyono Susilo; Ketut Swardika
International Journal of Remote Sensing and Earth Sciences Vol. 3 (2006)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2006.v3.a1207

Abstract

-
NUMERICAL CALCULATION FOR THE RESIDUAL TIDAL CURRENT IN BENOA BAY-BALI ISLAND GEDE HENDRAWAN; WAYAN NUARSA; WAYAN SANDI; A.F. KOROPITAN; YASUHIRO SUGIMORI
International Journal of Remote Sensing and Earth Sciences Vol. 2 (2005)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2005.v2.a1362

Abstract

Princeton Ocean Model (POM) was used to calculate the tidal current and M2-residual current in Benoa Bay using barotropic model (mode 2). The model was forced by tidal elevation, which was given along the open boundary condition using tide data prediction from Hydro-Oceanography Division-Indonesian Navy (DISHIDROS TNI-AL). The computed tidal current and residual current have been compared with both data in Benoa Bay, that are data of the open boundary of Benoa Bay and condition of Benoa Bay after developed a port and reclamation of Serangan Island. The maximum velocity of tidal current for open boundary conditions at flood tide is 0.71 m/sec, whereas at ebb tide is 0.65 m/sec and the maximum velocity after developed a port and reclamation of Serangan Island, at flood tide, is 0.69 m/sec. The simulation of residual current with particular emphasis on predominant constituent of M2 after developed a port and reclamation of Serangan Island shows a strong flow at the western part of Tanjung Benoa and Benoa Harbor and also at bay mouth between Serangan Island and Tanjung Benoa. Maximum velocity of M2-residual current is 0.0585 m/sec by the simulation and showed that thecurrent which was produced forming two eddies in the bay of which one eddy is in the mouth of bay in southern part. The residual current for open boundary condition of bay shows four eddies circulation, one big eddies and the others small. The anticlockwise circulation occurs in the inner part of the bay.
STUDY ON VARIABILITY MECHANISM OF 1997/1998 ENSO IN PACIFIC OCEAN AND EASTERN PART OF INDONESIAN ARCHIPELAGO Luh Made Chandra; Astiti Ratnasari; I Gede Hendrawan; I Wayan Gede Astawa Karang; Yasuhiro Sugimori
International Journal of Remote Sensing and Earth Sciences Vol. 3 (2006)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2006.v3.a1210

Abstract

El Nino-Southern Oscillation (ENSO) is one of the most important climate anomalies humans are concerned about. It brought many changes in physical of the ocean. This phenomenon causes changes in sea surface temperature (SST). During El-Nino condition, the SST is much warmer in eastern side of Pacific Ocean than normal condition, and during La-Nina event the SST in eastern Pacific Ocean is cooler than normal condition. From July 1997, the warm water has spread from the western Pacific Ocean towards the east and the winds in the western Pacific were blowing strongly towards the east, pushing the warm water eastward on December 1997 and January 1998. Strong La-Nina condition water extended farther westward than usual. In October 1997, during El-Nino event 1997, the SST in eastern part of Indonesia Archipelago was cooler. The varies of SST in PacificOcean during El-Nino 1997 was influenced the Indonesian Through Flow (ITF). During El-Nino event 1997, surface current flown strongly from Pacific Ocean to the Indian Ocean On the other hand, since March 1998 the surface current inversed from Indonesian Sea to the Pacific Ocean.
PROGRESS FOR STABLE ARTIFICIAL LIGHTS DISTRIBUTION EXTRVCTION ACCURACY AND ESTIMATION OF ELECTRIC] POWER CONSUMPTION BY MEANS OF DMSP/OLS NIGHTTIME IMAGERY MASANAO HARA; SHUHEI OKADA; HIROSI YAGI; TAKASHI MORIYAMA; KOJI SHIGEHARA; YASUHIRO SUGIMORI
International Journal of Remote Sensing and Earth Sciences Vol. 1 No. 1 (2004)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2004.v1.a1326

Abstract

The Noise Reduction Filter (NRF) that is developed by the authors is applied to extract artificial nightlight components of a time series DMSP/OLS-VIS dataset. High frequency components from the time series DMSP/OLS-VIS dataset are exhausted and a direct current component is extracted by the NRF that is one of the Fourier analysis techniques. The inference of cloud and other disturbance noise are also removed, and a stable artificial nightlight is extracted by the NRF filtration. The intensity value in high power light areas observed by DMSP/OLS-VIS is saturated because of narrow dynamic range of the sensor gain. A simple model called "Deltaic Model" developed by authors corrected those saturated value. Verification of the accuracy of correction methods above described is carried out by comparison with electric power consumption of the calculated values from the model and statistical ones of each prefecture in Japan. Correlation of the values is satisfactory as shown R2 = 0.725. The results of this work shows the remote sensing method by using the DMSP/OLS-VIS nighttime imagery with the correction methods above described is useful to estimate the electric power consumption through a year of fixed areas.
PRESENT UNDERSTANDING OF ACEH TSUNAMI (APPLICATIONS OF DATA FROM FIELD TO SATELLITE OBSERVATIONS) I Gede Hendrawan; Bambang Sukresno; Yasuhiro Sugimori
International Journal of Remote Sensing and Earth Sciences Vol. 4 (2007)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2007.v4.a1222

Abstract

Application of data from field to satellite observation and simulation has been made as present understanding of Aceh tsunami. Tsunami has attracted attention after struck Aceh in December 26th 2004, generated by a strong eartquake with magnitude Mw=9.0. The eatrhquake triggered giant tsunami waves that propagated throughout the Indian Ocean, causing extreme inundation and destruction along the northern and western coast of Sumatra. Within hours, the tsunami devastated the distant shores of Thailand to east as well as Sri Lanka, India and Maldives to the west. The tsunami also caused deaths, and destruction in Somalia and other nations of East Africa. The tsunami was recorded on tidal stations throughout the Indian Oceans in worldwide. Unlike the Pacific, the Indian Ocean does not yet have a network of deep-ocean pressure sensors, and so coastal tide gauges provide the only direct measurement of Indian Ocean stunami amplitudes. We had many lessons and basic knowledge which had already been learned from this tragic event in the Indian Ocean. Many more lessons should be learned in the near future as this tragedy unfolds and reverals many failures to value and protect human life in this neglected region of the world.