CHAOFANG ZHAO
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

STUDY OF OCEAN PRIMARY PRODUCTIVITY USING OCEAN COLOR DATA AROUND JAPAN TAKAHIRO OSAWA; CHAOFANG ZHAO; I WAYAN NUARSA; SWARDIDAI I KETUT; YASUHIROSUGIMORI
International Journal of Remote Sensing and Earth Sciences Vol. 2 (2005)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2005.v2.a1354

Abstract

Ocean primary production is an important factor for determining the ocean's role in global carbon cycle. In recent years, much more chlorophyll-a concentration data in the euphotic layer were derived from the satellite ocean color sensors. The primary productivity algorithms have been proposed based on satellite chlorophyll measurements (Piatt, 1988; Morel, 1991) and other environmental parameters such as sea surfacetemperature or mixed layer depth (Behrenfeld and Falkowski, 1997; Esaias, 1996; Asanuma, 2002). In order to estimate integrated primary productivity in the whole water column, the vertical distribution of chlorophyll concentration below the sea surface should be reconstructed based on satellite data. In this paper, the vertical profile data of chlorophyll-a (Chl-a) measured around Japan Islands from 1974 to 1994 were reanalyzed based on the shifted-Gaussian shape proposed by Piatt et al (1988). Using this statistical model (neural network) and the photosynthesis irradiance parameters from Asanuma (2002), the distribution of primary productivity and its seasonal variation around Japan islands were estimated from SeaWiFS data, and the results were compared with in situ data and the other two models estimated from VGPM and mixed layer depth model.
STUDY FOR ESTIMATION OF AIR-SEA C02 GAS TRANSFER BY WAVE BREAKING MODEL USING SATELLITE DATA — ESTIMATION OF THE FRICTION VELOCITY CONSIDERING WAVE EFFECT NAOYA SUZUKI; NAOTO EBUCHI; CHAOFANG ZHAO; TAKAHIRO OSAWA; TAKASHI MORIYAMA
International Journal of Remote Sensing and Earth Sciences Vol. 1 No. 1 (2004)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2004.v1.a1328

Abstract

The determination of wind friction velocity from satellite-derived wind data will take an important role of key factors for computation of C02 flux transfer. It is necessary for relation between wind speed and wind friction velocity to determine that of relation between nondimensional roughness length and wave age, included with all parameters (wind, wave). In this study, we proposed a new method to estimate u„, which is based on the new relationship between non-dimensional roughness and wave velocity, after considering fetch andwave directionality. Consequently, we obtained the new relationship between friction velocity and wind speed. Using this relationship, we estimated the wave frequency from two methods:3 per 2 powers law (Toba, 1972) and WAM model (WAMDI, 1988). The results arc compared with the results estimated from Charnock formula (1955) and the above influence of wave effects on the wind stress is also discussed. A new relationship was established to determine CO. exchange coefficient based on whitecap model (Monahan and Spillane 1984), using U|0-u, relationship in North Pacific Ocean, satellite data of NOAA-AVHRR (SST) and DMSP-SSM-I (wind speed) in Oct., Nov., and Dec. 1991. The C02 exchange coefficient estimated by other models (Wanninkhof, 1992; Liss and Merlivat, 1986; Tans et al., 1990) are also compared with these results. The results show the importance of wave breaking effect.