Nurhidayah Mohd Hapipi
Universiti Putra Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Effect of SnO2 Addition on YBCO Superconducting Properties through Thermal Treatment Method Aliah Nursyahirah Kamarudin; Tan Kar Yeow; Mohd Mustafa Awang Kechik; Chen Soo Kien; Lim Kean Pah; Muhammad Kashfi Shabdin; Nurhidayah Mohd Hapipi; Muhammad Khalis Abdul Karim; Aris Doyan; Yap Siew Hong; Abdul Halim Shaari
Journal of Material Science and Radiation Vol. 1 No. 1 (2025): April
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this study, YBa2Cu3O7-δ (YBCO) superconductors were synthesized using a thermal treatment method with the addition of 1.0 wt. % SnO₂. The synthesis of YBCO employed nitrate-based precursors and polyvinylpyrrolidone (PVP) as a capping agent to enhance homogeneity during the synthesis process. All samples were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Four-point probe (4PP). TGA results of the pure YBCO sample confirmed the complete transformation of nitrate-based precursors into oxide forms prior to the formation of the YBCO phase. XRD pattern revealed that Y123 as a major phase and Y124 as a minor phase in all samples with orthorhombic crystal structure were preserved. However, the peak intensity of the Y123 was pronounced with the addition of the SnO2 sample, suggesting the enhancement phase formation due to the presence of SnO₂. The electrical resistivity measures revealed a sharp superconducting transition in all samples. However, the reduction in superconducting transition temperatures for the SnO2 addition were observed where the Tc-onset decreased from 91.70 K to 89.25 K for the YBCO and YBCO + 1.0 wt.% of SnO2, respectively. This also exhibited the broadening of transition width, ΔTc indicating the suppression of superconducting properties with SnO₂ inclusion. SEM analysis showed notable differences in microstructure. The pure YBCO sample exhibited a larger average grain size of 1.32 µm, while the YBCO + 1.0 wt. % SnO2 sample formed small and rounded grains with smoother edges, potentially impacting intergranular connectivity and charge transport. Therefore, the addition of 1.0 wt. % SnO2 to YBCO enhanced the formation of the Y123 phase but adversely affected the superconducting transition temperature and microstructural features. These findings highlight the dual role of SnO2 in promoting phase purity while modifying grain morphology and electrical performance, offering insight into the optimization of dopants in high-temperature superconductors
Effect of Sintering Temperature on the Phase Formation and Superconducting Properties of Bi1.6Pb0.4Sr2Ca2Cu3O10 Ceramics Synthesised via Co-Precipitation Nurhidayah Mohd Hapipi; Soo Kien Chen; Mohd Mustafa Awang Kechik; Kean Pah Lim; Abdul Halim Shaari; Nor Atikah Baharuddin; Nurul Auni Khalid; Muhammad Kashfi Shabdin; Kar Ban Tan; Oon Jew Lee
Journal of Material Science and Radiation Vol. 1 No. 2 (2025): August
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i2.387

Abstract

In this work, (Bi, Pb)-2223 superconducting ceramics with the nominal composition Bi1.6Pb0.4Sr2Ca2Cu3O10 were synthesised via the co-precipitation method and sintered at temperatures of 845 °C, 850 °C, and 855 °C. X-ray diffraction (XRD) analysis confirmed the dominance of Bi1.6Pb0.4Sr2Ca2Cu3O10 phase with minor traces of secondary phases, Ca2PbO4 (dicalcium lead (IV) oxide). An increase in sintering temperature led to a larger average grain size and reduced intergranular voids. Electrical resistivity measurements using the four-point probe method revealed the highest superconducting transition temperature (Tc onset = 104 K) for samples sintered at 845 °C. Higher sintering temperatures reduced the value of Tc onset and resulted in a wider transition width, ΔTc. These findings highlight the critical influence of sintering temperature on the structural and microstructural properties, which in turn govern the superconducting performance of (Bi, Pb)-2223 ceramics.
Comparative Characterisation of Structural and Superconducting Properties of Y-123 and Y-247 Synthesised by Thermal Treatment at 980 °C Siew Hong Yap; Tai Pao Er; Mohd Mustafa Awang Kechik; Muhammad Khalis Abdul Karim; Hussien Baqiah; Soo Kien Chen; Kean Pah Lim; Muhammad Kashfi Shabdin; Nurhidayah Mohd Hapipi; Aliah Nursyahirah Kamarudin; Arebat Ryad Alhadei Mohamed; Aris Doyan; Abdul Halim Shaari
Journal of Material Science and Radiation Vol. 1 No. 3 (2025): December
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i3.425

Abstract

This study presents a comparative analysis of the structural and superconducting properties of YBa₂Cu₃O₇−δ (Y-123) and Y₂Ba₄Cu₇O₁₅−δ (Y-247) superconductors synthesised via a thermal treatment method at 980 °C. Metal nitrates were used as starting precursors, with polyvinylpyrrolidone (PVP) serving as a capping agent to enhance dispersion and control microstructure. X-ray diffraction (XRD) confirmed that Y-123 and Y-247 were the dominant phases in their respective samples, although minor peaks of BaCuO₂ were detected, indicating the presence of secondary phases. Scanning electron microscopy (SEM) revealed that Y-247 exhibited larger grain morphology and higher porosity than Y-123, suggesting that the chosen sintering temperature exceeds the thermal stability range for the Y-247 phase. Electrical resistivity measurements showed a single superconducting transition for both samples, with Y-123 exhibiting a sharper transition width (ΔTc = 8.1 K) compared to Y-247, indicating better grain connectivity and phase uniformity. Energy dispersive X-ray spectroscopy (EDX) supported the elemental presence of Y, Ba, Cu, and O in both samples, though variations in stoichiometry were attributed to secondary phases. The observed expansion in the c-axis lattice of Y-247, combined with its higher porosity, points to oxygen loss during sintering, which contributes to the reduced superconducting performance. Overall, the results confirm that both Y-123 and Y-247 can be successfully synthesised using a simple and environmentally friendly thermal treatment method. However, Y-123 exhibits better structural integrity and superconducting performance at the high sintering temperature of 980 °C, making it a more promising candidate for large-scale production of bulk high-temperature superconductors.
Influence of Sintering Temperatures on Pr0.7Ba0.3MnO3 Prepared Using Thermal Treatment Method Xiao Tong Hon; Kean Pah Lim; Lik Nguong Lau; Mohd Mustafa Awang Kechik; Soo Kien Chen; Muhammad Kashfi Shabdin; Nurhidayah Mohd Hapipi; Najihah Rohiat; Abdul Halim Shaari
Journal of Material Science and Radiation Vol. 1 No. 3 (2025): December
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i3.478

Abstract

In this work, Pr0.7Ba0.3MnO3 (PBMO) was synthesised using a thermal treatment method with sintering temperature ranging from 800 °C to 1100 °C. X-ray diffraction (XRD) confirmed the formation of pure PBMO phase at 1100 °C, while lower sintering temperatures led to the presence of secondary phase, particularly Pr(Mn2O5). Microstructural analysis revealed significant grain growth with rising sintering temperatures, accompanied by enhanced crystallinity and reduced secondary phases. Magnetic measurements indicated ferromagnetic behaviour at room temperature for all samples. However, the electrical resistivity demonstrates an unexpected increase with sintering temperature, attributed to the influence of secondary phase at lower sintering temperatures and grain growth in the pure PBMO phase at higher sintering temperatures. Additionally, microstructural defects such as oxygen non-stoichiometry or porosity might further contribute to the suppression of the metal-insulator transition temperature. Overall, this study highlights the significant role of sintering temperatures in controlling the phase purity, microstructure and physical behaviour of PBMO samples, offering valuable insights for their potential applications in spintronics or magnetic sensing devices.