Ariyanti Jalal
Universitas Pendidikan Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing Mathematics Comprehension: A Decision Tree Analysis Using Orange Data Mining Ariyanti Jalal; Dadan Dasari
AL-ISHLAH: Jurnal Pendidikan Vol 17, No 2 (2025): JUNE 2025
Publisher : STAI Hubbulwathan Duri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35445/alishlah.v17i2.6433

Abstract

Comprehension skills are essential in mathematics learning, as students' understanding is influenced by various internal and external factors. Recognizing these factors is crucial for educators to design effective teaching strategies. This study aims to classify and predict students' mathematical comprehension based on gender, attitude, learning styles, and self-confidence. A total of 53 eleventh-grade students from SMA Negeri 8 Ternate participated. Primary data were analyzed using data mining techniques—specifically, classification and prediction using the Decision Tree method via Orange Data Mining software. The analysis identified learning style as the most influential factor in students’ mathematical comprehension. The Decision Tree's root node represented comprehension data from 31 students, of which 19 students (61.3%) were classified as having understood the material. The internal node revealed two branches: students with an auditory learning style (8 students) showed a 100% understanding rate, whereas students with kinesthetic or visual styles (11 students) demonstrated a 47.8% understanding rate. The model's prediction accuracy based on the four attributes was 65%. Findings highlight the significance of tailoring instruction to students' learning styles. The relationship between visual, auditory, and kinesthetic learning preferences—when considered alongside gender, attitude, and self-confidence—can offer valuable insights into learning patterns. This study provides a practical reference for educators in developing effective and personalized teaching methods. By leveraging insights into learning styles and associated factors, instructional approaches can be optimized for improved mathematical comprehension.
Identifikasi Profil Sikap Siswa Terhadap Matematika Ariyanti Jalal; Dadan Dasari
Kalam Cendekia: Jurnal Ilmiah Kependidikan Vol 13, No 2 (2025): Kalam Cendekia: Jurnal Ilmiah Kependidikan
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/jkc.v13i2.103529

Abstract

Penelitian ini merupakan penelitian deskriptif yang bertujuan untuk mendeskripsikan sikap siswa VIII MTs Makharimal Akhlak Morotai Maluku Utara terhadap matematika. Konten matematika yang sulit dipelajari menjadi salah satu faktor siswa cenderung bersikap negatif terhadap matematika. Pengukuran sikap siswa menggunakan data angket skala Likert yang terdiri dari tiga aspek yaitu pandangan siswa terhadap matematika, menyukai pelajaran matematika, dan minat siswa belajar matematika yang disebar ke 27 siswa. Hasil dari penelitian ini bahwa dari 27 siswa diperoleh siswa yang memiliki sikap positif dan positif sebanyak 14 siswa (51,85%), sedangkan siswa yang bersikap negatif dan sangat negatif terhadap matematika sebanyak 13 siswa (48,15%). Hasil ini menyimpulkan bahwa sikap siswa kelas VIII MTs Makharimal Akhlak terhadap matematika cenderung lebih banyak daripada yang bersikap negatif meskipun perbedaannya sangat kecil.