This Author published in this journals
All Journal Jurnal Simetris
Sudibyo, Usman
Universitas Muria Kudus

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ALGORITMA NAIVE BAYES DENGAN FITUR SELEKSI UNTUK MENGETAHUI HUBUNGAN VARIABEL NILAI DAN LATAR BELAKANG PENDIDIKAN Astuti, Yani Parti; Sudibyo, Usman; Kurniawan, Achmad Wahid; Rahayu, Yuniarsi
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 9, No 1 (2018): JURNAL SIMETRIS VOLUME 9 NO 1 TAHUN 2018
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (487.659 KB) | DOI: 10.24176/simet.v9i1.2016

Abstract

Setiap Perguruan Tinggi mempunyai mahasiswa baru yang berasal dari berbagai sekolah menengah atas dan juga sekolah menengah kejuruan. Seperti halnya pada program studi teknik informatika fakultas ilmu komputer di Universitas Dian Nuswantoro. Program studi ini mempunyai mahasiswa terbanyak di Udinus, sehingga perlu selalu diadakan evaluasi. Dalam hal ini evaluasi yang dipilih adalah tentang asal jurusan sekolah mahasiswa dengan variabel nilai mata kuliah. Dengan mengambil mahasiswa dari angkatan tahun 2010 sampai 2012 sebanyak 10030 mahasiswa, hanya 489 mahasiswa yang mengisi asal jurusan sekolah. Dari sejumlah mahasiswa tersebut dilakukan preposisi dengan mengambil nilai mata kuliah wajib sebanyak 25 mata kuliah dan asal jurusan sekolah. Teknik data mining berupa algoritma naive bayes dioptimasi dengan fitur selesi forward selection telah meningkatkan akurasi dalam penemuan pola klasifikasi. Peningkatan akurasi dari naive bayes 64,77% menjadi 78,08% setelah dioptimasi dengan forward selection. Dengan demikian hasil klasifikasi tersebut bisa digunakan sebagai informasi dalam metode pembelajaran yang bisa diterapkan.Kata kunci: data mining, forward selection, naïve bayes.
OPTIMASI ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGKLASIFIKASIAN CITRA DAGING SAPI DAN DAGING BABI BERBASIS GLCM DAN HSV Sudibyo, Usman; Kusumaningrum, Desi Purwanti; Rachmawanto, Eko Hari; Sari, Christy Atika
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 9, No 1 (2018): JURNAL SIMETRIS VOLUME 9 NO 1 TAHUN 2018
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (429.936 KB) | DOI: 10.24176/simet.v9i1.1943

Abstract

Meningkatnya kebutuhan daging sapi, berdampak pada harga daging sapi. Harga daging sapi yang terus menerus mengalami kenaikan, tentunya menyebabkan penurunan penjualan daging sapi. Untuk mengantisipasi hal tersebut, maka beberapa pedagang mencampurkan daging sapi dengan daging babi. Dipilihnya daging babi, karena harga daging babi lebih murah dan warna serta tekstur daging babi yang mirip dengan daging sapi. Secara kasat mata daging sapi dan daging babi sulit untuk dibedakan bagi orang awam. Oleh karena itu, perlu adanya sistem yang dapat membedakan kedua daging. Penelitian ini menggunakan metode klasifikasi untuk membedakan kedua daging. Metode klasifikasi menggunakan algoritma Learning Vector Quantization. Dan penelitian ini memiliki tiga tahapan utama seperti preprocessing, segmentasi warna, ekstraksi fitur, dan klasifikasi. Preprocessing digunakan untuk mendapatkan Region of Interest (ROI) dengan memotong citra dan mengubah ukuran citra. Segmentasi warna menggunakan metode HSV untuk mendapatkan kedalaman warna citra dan ekstraksi fitur mengguakan Gray Level Co-occurrence Matrix (GLCM) untuk mendapatkan fitur dari kontras, korelasi, energi, dan homogenitas. Hasil klasifikasi dengan algoritma LVQ mendapatkan akurasi tertinggi 76,25%. Algoritma telah diuji dengan MSE untuk mengetahui minimum error dan PSNR digunakan sebagai pengukuran kualitas citra pengolahan.