Wijayanti Nurul Khotimah
Department of Informatics, Institut Teknologi Sepuluh Nopember

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

PENGENALAN SISTEM ISYARAT BAHASA INDONESIA MENGGUNAKAN KOMBINASI FITUR STATIS DAN FITUR DINAMIS LMC BERBASIS L-GCNN Supria Supria; Darlis Herumurti; Wijayanti Nurul Khotimah
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No. 2, Juli 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i2.a574

Abstract

Jumlah karya ilmiah yang dihasilkan oleh akademisi dan peneliti di Indonesia semakin banyak, terutama setelah diterbitkannya surat edaran Dirjen DIKTI tahun 2012 dimana karya ilmiah dijadikan sebagai syarat kelulusan mahasiswa S1, S2 dan S3. Namun demikian, tidak semua karya ilmiah tersebut memiliki kualitas yang baik. Masih banyak karya ilmiah yang belum memenuhi standar baku Ejaan Yang Disempurnakan (EYD). Pada artikel ini, penulis mengembangkan sebuah kakas bantu untuk mendeteksi kesalahan tanda baca pada karya ilmiah, khususnya yang berbahasa Indonesia, sesuai dengan EYD. Aplikasi dirancang agar dapat mendeteksi kesalahan tanda baca pada tulisan karya ilmiah dengan format .doc atau .docx serta dapat menghasilkan keluaran berupa arsip Microsoft Word dengan tambahan hasil telaah pemeriksaan tanda baca yang dibangkitkan secara otomatis. Deteksi kesalahan tanda baca menggunakan metode pencarian kata dengan algoritma BoyerMoore. Aplikasi kakas bantu telah diuji coba dengan hasil rata-rata nilai presisi sistem sebesar 0,6806, recall sebesar 0,969 dan akurasi sistem sebesar 0,9636. Hasil tersebut menunjukkan bahwa aplikasi sudah mampu mendeteksi adanya kesalahan tanda baca meskipun masih ada keterbatasan deteksi karena tidak semua aturan tanda baca dicakup dalam pemeriksaannya.
ALPHABET SIGN LANGUAGE RECOGNITION USING LEAP MOTION TECHNOLOGY AND RULE BASED BACKPROPAGATION-GENETIC ALGORITHM NEURAL NETWORK (RBBPGANN) Wijayanti Nurul Khotimah; Risal Andika Saputra; Nanik Suciati; Ridho Rahman Hariadi
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 15, No. 1, Januari 2017
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v15i1.a639

Abstract

Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%). Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language) in SIBI (Sign System of Indonesian Language) which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN), was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN). Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm.
DC-SAM: DILATED CONVOLUTION AND SPECTRAL ATTENTION MODULE FOR WHEAT SALT STRESS CLASSIFICATION AND INTERPRETATION Wijayanti Nurul Khotimah
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 21, No. 2, July 2023
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v21i2.a1219

Abstract

Salt stress can impact wheat production significantly and is difficult to be managed when the condition is critical. Hence, detecting such stress whet it is at an early stage is important. This paper proposed a deep learning method called Dilated Convolution and Spectral Attention Module (DC-SAM), which exploits the difference in spectral responses of healthy and stressed wheat. The proposed DC-SAM method consists of two key modules: (i) a dilated convolution module to capture spectral features with large receptive field; (ii) a spectral attention module to adaptively fuse the spectral features based on their interrelationship. As the dilated convolution module has long receptive fields, it can capture short- and long dependency patterns that exist in hyperspectral data. Our experimental results with four datasets show that DC-SAM outperforms existing state-of-the-art methods. Also, the output of the proposed attention module reveals the most discriminative spectral bands for a given wheat stress classification task.